Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Preprocessing
2.3. Soil Particle Composition and Chemical Properties
2.4. Data Analysis and Processing
3. Results
3.1. Soil Particle Composition Characteristics Under Different Land-Use Types
3.2. Characteristics of Soil OC, TN, and TP Contents Under Different Land-Use Types
3.3. Characteristics of Soil OC, TN, and TP Ecological Stoichiometry
3.4. Relationships Between Soil Particle Composition and OC, TN, TP Stocks with Stoichiometric Indices
4. Discussion
4.1. Effects of Land-Use on Soil Particle Composition
4.2. Land-Use Driven Nutrient Cycling and Its Ecological–Hydrological Implications
4.3. Stoichiometric Ratios Indicate Nutrient Constraints and Soil Water Resilience
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kühn, M. Greenbelt and Green Heart: Separating and Integrating Landscapes in European City Regions. Landsc. Urban Plan. 2003, 64, 19–27. [Google Scholar] [CrossRef]
- Giannico, V.; Spano, G.; Elia, M.; D’Este, M.; Sanesi, G.; Lafortezza, R. Green Spaces, Quality of Life, and Citizen Perception in European Cities. Environ. Res. 2021, 196, 110922. [Google Scholar] [CrossRef]
- Tang, W.; Liu, S.; Feng, S.; Xiao, F.; Ogbodo, U.S. Evolution and Improvement Options of Ecological Environmental Quality in the World’s Largest Emerging Urban Green Heart as Revealed by a New Assessment Framework. Sci. Total Environ. 2023, 858, 159715. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Liu, R. The Evolution of Ecological Space in an Urban Agglomeration Based on a Suitability Evaluation and Cellular Automata Simulation. Sustainability 2022, 14, 7455. [Google Scholar] [CrossRef]
- Li, C.; Zhang, R.; Li, T.; Guo, H.; Guo, R. Dynamic Changes and Influencing Factors of Vegetation in the “Green Heart” Zone of the Chang-Zhu-Tan Urban Agglomeration during the Past 21 Years. Int. J. Environ. Res. Public Health 2023, 20, 4517. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Chen, X.; Ma, H.; Zhang, X.; Shi, J.; Wang, X.; Zhao, X.; Wang, M.; Xian, F.; Lu, Z.; et al. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Components from 2000 to 2023. Front. Plant Sci. 2024, 15, 1457826. [Google Scholar] [CrossRef] [PubMed]
- Osok, R.; Doyle, R. Soil Development on Dolerite and Its Implications for Landscape History in Southeastern Tasmania. Geoderma 2004, 121, 169–186. [Google Scholar] [CrossRef]
- Tang, N.; Dultz, S.; Gerth, D.; Klumpp, E. Soil Colloids as Binding Agents in the Formation of Soil Microaggregates in Wet-Dry Cycles: A Case Study for Arable Luvisols under Different Management. Geoderma 2024, 443, 116830. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, H.; Gao, H.; An, S. Response and Driving Factors of Soil Microbial Diversity Related to Global Nitrogen Addition. Land Degrad. Dev. 2020, 31, 190–204. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zhang, Z. Impacts of Land-Use Changes on Soil Erosion in Water-Wind Crisscross Erosion Region of China. Remote Sens. 2019, 11, 1732. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Liu, X.; Xiao, L. Changes in Soil Aggregate Fractions, Stability, and Associated Organic Carbon and Nitrogen in Different Land Use Types in the Loess Plateau, China. Sustainability 2022, 14, 3963. [Google Scholar] [CrossRef]
- Wang, A.; Huang, Q.; Xu, X.; Li, X.; Li, Y. Influence of Vegetation Restoration on Matrix Structure and Erosion Resistance of Iron Tailings Sites in Eastern Hebei, China. J. For. Res. 2020, 31, 969–980. [Google Scholar] [CrossRef]
- Majumder, B.; Ruehlmann, J.; Kuzyakov, Y. Effects of Aggregation Processes on Distribution of Aggregate Size Fractions and Organic C Content of a Long-Term Fertilized Soil. Eur. J. Soil Biol. 2010, 46, 365–370. [Google Scholar] [CrossRef]
- Richards, J.R.; Zhang, H.; Schroder, J.L.; Hattey, J.A.; Raun, W.R.; Payton, M.E. Micronutrient Availability as Affected by the Long-Term Application of Phosphorus Fertilizer and Organic Amendments. Soil Sci. Soc. Am. J. 2011, 75, 927–939. [Google Scholar] [CrossRef]
- Meng, H.; Xu, M.; Lu, J.; He, X.; Li, J.; Shi, X.; Peng, C.; Wang, B.; Zhang, H. Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands. J. Integr. Agric. 2013, 12, 2092–2102. [Google Scholar] [CrossRef]
- Niu, X.; Gao, P.; Wang, B.; Liu, Y. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China. Int. J. Environ. Res. Public Health 2015, 12, 15379–15389. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and Variation of C:N:P Ratios in China’s Soils: A Synthesis of Observational Data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Frossard, E.; Buchmann, N.; Bünemann, E.K.; Kiba, D.I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O.Y.A. Soil Properties and Not Inputs Control Carbon: Nitrogen: Phosphorus Ratios in Cropped Soils in the Long Term. Soil 2016, 2, 83–99. [Google Scholar] [CrossRef]
- Hipps, N.A.; Davies, M.J.; Dodds, P.; Buckley, G.P. The Effects of Phosphorus Nutrition and Soil pH on the Growth of Some Ancient Woodland Indicator Plants and Their Interaction with Competitor Species. Plant Soil 2005, 271, 131–141. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, M.; Lu, X.; Lou, Y.; Liu, B. Carbon, Nitrogen and Phosphorus Contents of Wetland Soils in Relation to Environment Factors in Northeast China. Wetlands 2017, 37, 153–161. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, D.; Chen, Z.; Li, H.; Deng, J.; Qiao, W.; Han, X.; Yang, G.; Feng, Y.; Huang, J. Substrate Quality and Soil Environmental Conditions Predict Litter Decomposition and Drive Soil Nutrient Dynamics Following Afforestation on the Loess Plateau of China. Geoderma 2018, 325, 152–161. [Google Scholar] [CrossRef]
- Ding, L.; Wang, P.; Zhang, W.; Zhang, Y.; Li, S.; Wei, X.; Chen, X.; Zhang, Y.; Yang, F. Shrub Encroachment Shapes Soil Nutrient Concentration, Stoichiometry and Carbon Storage in an Abandoned Subalpine Grassland. Sustainability 2019, 11, 1732. [Google Scholar] [CrossRef]
- Ontman, R.; Groffman, P.M.; Driscoll, C.T.; Cheng, Z. Surprising Relationships between Soil pH and Microbial Biomass and Activity in a Northern Hardwood Forest. Biogeochemistry 2023, 163, 265–277. [Google Scholar] [CrossRef]
- Chen, J.; Gu, W.; Tao, J.; Xu, Y.; Wang, Y.; Gu, J.; Du, S. The Effects of Organic Residue Quality on Growth and Reproduction of Aporrectodea Trapezoides under Different Moisture Conditions in a Salt-Affected Agricultural Soil. Biol. Fertil. Soils 2017, 53, 103–113. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, X.; Liu, S.; Liu, N.; Liu, M.; Chen, C.; Zhang, X.; Niu, S.; Wang, J. Precipitation Alleviates Microbial C Limitation but Aggravates N and P Limitations along a 3000-Km Transect on the Tibetan Plateau. Catena 2024, 247, 108535. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Shen, H.; Zhao, M.; Xu, L.; Xing, A.; Fang, J. Soil Extracellular Enzyme Activity and Stoichiometry in China’s Forests. Funct. Ecol. 2020, 34, 1461–1471. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, B.; Li, J.; Cheng, X. Soil Microbial Relative Resource Limitation Exhibited Contrasting Seasonal Patterns along an Elevational Gradient in Yulong Snow Mountain. Funct. Ecol. 2023, 37, 1328–1338. [Google Scholar] [CrossRef]
- Arenberg, M.R.; Arai, Y. Effects of Native Leaf Litter Amendments on Phosphorus Mineralization in Temperate Floodplain Soils. Chemosphere 2021, 266, 129210. [Google Scholar] [CrossRef]
- Aerts, R.; de Caluwe, H.; Beltman, B. Is the Relation between Nutrient Supply and Biodiversity Co-Determined by the Type of Nutrient Limitation? Oikos 2003, 101, 489–498. [Google Scholar] [CrossRef]
Land-Use Patterns | Number of Sampling Points | Predominant Soil Types | Dominant Disturbance Type | Dominant Vegetation |
---|---|---|---|---|
Farmland | 28 | Paddy soil, Yellow soil | Tillage, fertilization, irrigation | Rapeseed, Corn, Rice, Sweet potato |
Other woodland | 16 | Red soil, Yellow soil | None or minimal | Osmanthus fragrans, Camellia, Cinnamomum camphora |
Arbor woodland | 80 | Red soil, Yellow soil | None or minimal | Pinus massoniana, Cunninghamia lanceolata, Loropetalum chinense |
Plantation | 14 | Red soil, Yellow soil, Paddy soil | Tillage, replanting, irrigation | Photinia serratifolia, Osmanthus fragrans, Camellia oleifera |
Soil Particle Size | Clay | Silt | Sand |
---|---|---|---|
Particle size/mm | <0.002 | 0.002~<0.050 | 0.050~<2 |
Factor | Type III Sum of Squares | Degree of Freedom 1 | Mean Square | F Value | Significance | |
---|---|---|---|---|---|---|
Land-use Patterns | OC | 86,180,743 | 3 | 28,726,914 | 1.025 | 0.384 |
TN | 1,760,460 | 3 | 586,820 | 4.581 | 0.004 | |
TP | 1,756,424 | 3 | 585,474 | 11.496 | 0.000 | |
C/N | 59 | 3 | 19 | 5.116 | 0.002 | |
C/P | 4306 | 3 | 1435 | 5.039 | 0.002 | |
N/P | 17 | 3 | 5 | 4.875 | 0.003 | |
Clay | 31,526 | 3 | 10,508 | 1.840 | 0.143 | |
Silt | 24,067 | 3 | 8022 | 2.077 | 0.106 | |
Sand | 103,721 | 3 | 34,573 | 3.330 | 0.022 | |
pH | OC | 102,302,553 | 1 | 102,302,553 | 3.651 | 0.058 |
TN | 187,507 | 1 | 187,507 | 1.464 | 0.228 | |
TP | 63,571 | 1 | 63,571 | 1.248 | 0.266 | |
C/N | 28 | 1 | 28 | 7.452 | 0.007 | |
C/P | 3315 | 1 | 3315 | 11.638 | 0.001 | |
N/P | 13 | 1 | 13 | 11.004 | 0.001 | |
Clay | 48,587 | 1 | 48,587 | 8.508 | 0.004 | |
Silt | 78,742 | 1 | 78,742 | 20.391 | 0.000 | |
Sand | 3622 | 1 | 3622 | 0.349 | 0.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Shi, Z.; Lin, C.; Zou, H.; Zhang, P.; Cheng, M.; Wan, T.; Wei; Zhang, C. Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China. Atmosphere 2025, 16, 1063. https://doi.org/10.3390/atmos16091063
Zhong Q, Shi Z, Lin C, Zou H, Zhang P, Cheng M, Wan T, Wei, Zhang C. Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China. Atmosphere. 2025; 16(9):1063. https://doi.org/10.3390/atmos16091063
Chicago/Turabian StyleZhong, Qi, Zhao Shi, Cong Lin, Hao Zou, Pan Zhang, Ming Cheng, Tianyong Wan, Wei, and Cong Zhang. 2025. "Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China" Atmosphere 16, no. 9: 1063. https://doi.org/10.3390/atmos16091063
APA StyleZhong, Q., Shi, Z., Lin, C., Zou, H., Zhang, P., Cheng, M., Wan, T., Wei, & Zhang, C. (2025). Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China. Atmosphere, 16(9), 1063. https://doi.org/10.3390/atmos16091063