ECMWF Atmospheric Profiles in Maroua, Cameroon: Analysis and Overview of the Simulation of Downward Global Solar Radiation
Abstract
:1. Introduction
2. Data and Methods
2.1. ECMWF Atmospheric Profiles of 12:00 UTC
- -
- At the surface level: surface pressure (Sp), total column water vapor (TCWV), total column ozone (TCO) and total cloud cover (TCC).
- -
- For 25 pressure levels, datasets of geopotential (), air pressure (P), air temperature (T), relative humidity (H) and horizontal wind components (U and V).
2.2. Measured Meteorological Data
2.3. MODTRAN Radiance Simulation with Standard and ECMWF Atmospheric Profiles
3. Results and Analysis
3.1. Comparison of ECMWF and Measured Meteorological Data at Ground Level
3.2. ECMWF Atmospheric Profiles
3.2.1. Total Column Quantities
3.2.2. Total Cloud Cover
3.2.3. Vertically Distributed Quantities
3.3. Setting and Computation of DGSR in Maroua
4. Summary and Perspectives
- -
- In order to maintain a good data accuracy, calibration settings or cleaning must be performed on solar radiation and wind sensors, and the lowest temporal resolution must be used in measuring.
- -
- Wind data biases have to be investigated further in order to determine any source of inaccuracy. A three-party comparison between ECMWF, measured, and MERRA or CFS wind data is considered.
- -
- Surface albedo variations, aerosol optical properties and cloud microphysics parameters could be assessed with the use of satellite data retrievals (ECMWF, MACC, MERRA,... models) and could thus better characterize the atmosphere.
- -
- Another issue relates mainly to solar radiation simulation, which may gain accuracy with the insertion of aerosol properties and surface albedo variations, and which could be more reliable with the consideration of cloud parameters to simulate DGSR under any atmospheric conditions. Validations may be performed by comparing these to CERES or ECMWF surface radiative flux products.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Le-Treut, H.; Somerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M. Historical Overview of Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Soden, B.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fotsing, T.C.; Njomo, D.; Cornet, C.; Dubuisson, P.; Nsouandele, J.L. Acquisition and study of global solar radiation in Maroua-Cameroon. Int. J. Renew. Energy Res. 2015, 5, 910–918. [Google Scholar]
- Abossolo, S.A.; Amougou, J.A.; Tchindjang, M. Perturbation Climatiques et Pratiques Agricoles Dans les Zones Agroécologiques du Cameroun: Changements Socio-économiques et Problématiques d’adaptation Aux Bouleversements Climatiques; Connaissances et Savoirs: Saint-Denis, France, 2017. [Google Scholar]
- Molua, E. Climatic trends in Cameroon: Implications for agricultural management. Clim. Res. 2006, 30, 255–262. [Google Scholar] [CrossRef]
- Molua, E. Turning up the heat on African agriculture: The impact of climate change on Cameroon’s agriculture. Afr. J. Agric. Resour. Econ. 2008, 2, 45–64. [Google Scholar]
- Redelsperger, J.-L.; Thorncroft, C.D.; Diedhiou, A.; Lebel, T.; Parker, D.J.; Polcher, J. African monsoon multidisciplinary analysis: An International Research Project and Field Campaign. Bull. Am. Meteorol. Soc. 2006, 87, 1739–1746. [Google Scholar] [CrossRef]
- Slingo, A.; Bharmal, N.A.; Robinson, G.J.; Settle, J.J.; Allan, R.P.; White, H.E.; Lamb, P.J.; Lélvé, M.I.; Turner, D.D.; McFarlane, S.; et al. Overview of observations from the RADAGAST experiment in Niamey, Niger: Meteorology and thermodynamic variables. J. Geophys. Res. Atmos. 2008, 113, D00E01. [Google Scholar] [CrossRef]
- Janicot, S.; Redelsperger, J.-L.; Lebel, T. La mousson ouest-africaine: Introduction à quelques contributions du programme d’étude multidisciplinaire AMMA. La Météorologie 2012. [Google Scholar] [CrossRef]
- Louf, V.; Pujol, O.; Sauvageot, H.; Riédi, J. Seasonal and diurnal water vapour distribution in the Sahelian area from microwave radiometric profiling observations. Q. J. R. Meteorol. Soc. 2015, 141, 2643–2653. [Google Scholar] [CrossRef]
- Akana, N.L.; Njomo, D. Assessing the aerosol optical thickness in Cameroon using ground-based solar radiation measurements. Adv. Sci. Lett. 2010, 3, 1–7. [Google Scholar]
- Akana, N.L.; Njomo, D. Profiles of cloud fraction and water content deduced from ground-based solar radiation measurements. Asian-Pac. J. Atmos. Sci. 2010, 46, 483–496. [Google Scholar] [CrossRef]
- Oumbe, A.; Wald, L.; Blanc, P.; Schroedter-Homscheidt, M. Exploitation of radiative transfer model for assessing solar radiation: The relative importance of atmospheric constituents. In Proceedings of the 1st International Congress on Heating, Cooling and Buildings (EUROSUN 2008), Lisbonne, Portugal, 7–10 October 2008; ISES: Freiburg, Germany, 2008; p. 403. [Google Scholar]
- Bernlöhr, K. Impact of atmospheric parameters on the atmospheric Cherenkov technique. Astropart. Phys. 2000, 12, 255–268. [Google Scholar] [CrossRef]
- Noh, Y.-C.; Sohn, B.-J.; Kim, Y.; Joo, S.; Bell, W. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations. Atmosphere 2016, 7, 94. [Google Scholar] [CrossRef]
- Calbet, X.; Schlüssel, P.; Hultberg, T.; Phillips, P.; August, T. Validation of the operational IASI level 2 processor using AIRS and ECMWF data. Adv. Space Res. 2006, 37, 2299–2305. [Google Scholar] [CrossRef]
- Martinez, M.A.; Mercedes, V. Validation of SAFNWC Layer Precipitable Water Using ECMWF Analysis Profile and Radiosonde. Available online: https://www.eumetsat.int/cs/idcplg?IdcService=GET_FILE&dDocName=pdf_conf_p48_s6_16_martinez_p&allowInterrupt=1&noSaveAs=1&RevisionSelectionMethod=LatestReleased (accessed on 11 June 2017).
- Gobiet, A.; Foelsche, U.; Steiner, A.K.; Borsche, M.; Kirchengast, G.; Wickert, J. Climatological validation of stratospheric temperatures in ECMWF operational analyses with CHAMP radio occultation data. Geophys. Res. Lett. 2005, 32, L12806.1–L12806.5. [Google Scholar] [CrossRef]
- Njomo, D. Les solutions solaires aux besoins énergétiques prioritaires des populations rurales des pays en développement. Revue de l’énergie 1988, 404, 498–503. [Google Scholar]
- Njomo, D. Modélisation des variations mensuelles de l’irradiation solaire reçue au Cameroun. In Modeling, Simulation and Control; AMSE Press: Oak Ridge, TN, USA, 1989; Volume 18, pp. 39–64. [Google Scholar]
- Boukerzaza, N.; Chaker, A.; Haddad, Z. Influence de l’irradiation globale sur les caractéristiques de fonctionnement d’un distillateur solaire. In Revue des Energies Renouvelables ICRESD-07 Tlemcen; CDER: Alger, Algerie, 2007; pp. 229–234. [Google Scholar]
- Kilic, B. Evaluating of Renewable Energy Potential in Turkey. Int. J. Renew. Energy Res. 2011, 1, 259–264. [Google Scholar]
- Mejdoul, R.; Taqi, M. The mean hourly global radiation prediction models investigation in two different climate regions in Morocco. Int. J. Renew. Energy Res. 2012, 2, 608–617. [Google Scholar]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef]
- Njomo, D.; Wald, L. Solar irradiation retrieval in Cameroon from meteosat satellite imagery using the heliosat_2 method. ISESCO Sci. Technol. Vis. 2006, 2, 19–24. [Google Scholar]
- Oumbe, A.; Blanc, P.; Ranchin, T.; Schroedter-Homscheidt, M.; Wald, L. A new method for estimating solar energy resource. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment (ISRSE), Stresa, Italy, 4–8 May 2009; Joint Research Center: Ispra, Italy, 2009; p. 773. [Google Scholar]
- Oumbe, A.; Wald, L. A parameterisation of vertical profile of solar irradiance for correcting solar fluxes for changes in terrain elevation. In Proceedings of the Earth Observation and Water Cycle Science Conference, Frascati, Italy, 18–20 November 2009; ESA: Paris, France, 2010; p. S05. [Google Scholar]
- Akana, N.L.; Njomo, D. Spatial and temporal distributions of downwelling solar radiation in Cameroon as derived using a parameterized solar radiative transfer model in a molecular atmosphere. JP J. Heat Mass Transf. 2009, 3, 73–93. [Google Scholar]
- Gurlit, W.; Bösch, H.; Bovensmann, H.; Burrows, J.P.; Butz, A.; Camy-Peyret, C.; Dorf, M.; Gerilowski, K.; Lindner, A.; Noël, S.; et al. The UV-A and visible solar irradiance spectrum: Inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements. Atmos. Chem. Phys. 2005, 5, 1879–1890. [Google Scholar] [CrossRef]
- Viúdez-Mora, A.; Calbó, J.; González, J.A.; Jiménez, M.A. Modeling atmospheric longwave radiation at the surface under cloudless skies. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Viúdez-Mora, A. Atmospheric Downwelling Longwave Radiation at the Surface during Cloudless and Overcast Conditions. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2011. [Google Scholar]
- Hulley, G.; Hook, S. Hyspiri Level-2 Tir Surface Radiance Algorithm Theoretical Basis Documen; Technical Report; Jet Propulsion Laboratory; California Institute of Technology: Pasadena, California, 2001. Available online: https://hyspiri.jpl.nasa.gov/downloads/Algorithm_Theoretical_Basis/HyspIRI_L2_Surface_Radiance_JPL_Pub_11-1.pdf (accessed on 11 June 2017).
- Schulze, S. A Comparison of MODTRAN and Rttov Radiative Transfer Models for Lake Surface Water Temperature Retrieval. Master’s Thesis, Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, 2012. [Google Scholar]
- Chiacchio, M.; Solmon, F.; Giorgi, F.; Stackhouse, P., Jr.; Wild, M. Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. J. Geophys. Res. Atmos. 2015, 120, 1951–1971. [Google Scholar] [CrossRef]
- Alexandri, G.; Georgoulias, A.K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations. Atmos. Chem. Phys. 2015, 15, 13195–13216. [Google Scholar] [CrossRef]
- ECMWF/WCRP Level III-A Global Atmospheric Data Archive, The Description of the Evolution of the ECMWF Forecasting System and Corresponding Archive. Technical Report. 1999, p. 126. Available online: https://rda.ucar.edu/datasets/ds115.3/docs/evolution.pdf (accessed on 11 June 2017).
- Persson, A. User Guide to ECMWF Forecast Products; Version 1.2; ECMWF: Shinfield, Reading, UK, 2015; Available online: https://www.ecmwf.int/sites/default/files/User_Guide_V1.2_20151123.pdf (accessed on 11 June 2017).
- DAVIS. Wireless Vantage Pro2TM & Vantage Pro2TM Plus Stations. Available online: https://www.davisnet.com/product_documents/weather/spec_sheets/6152_62_53_63_SS.pdf (accessed on 11 June 2017).
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Golden, S.M. MODTRAN4 User’s Manual. 2003. Available online: http://www.cis.rit.edu/~cnspci/references/berk2003.pdf (accessed on 11 June 2017).
- Abreu, L.W.; Anderson, G.P. (Eds.) The MODTRAN 2/3 Report and Lowtran 7 Model. 1996. Available online: http://web.gps.caltech.edu/~vijay/pdf/modrept.pdf (accessed on 11 June 2017).
- Rothman, L.S.; Gamache, R.R.; Tipping, R.H.; Rinsland, C.P.; Smith, M.A.H.; Benner, D.C.; Devi, V.M.; Flaud, J.-M.; Camy-Peyret, C.; Perrin, A.; et al. The HITRAN molecular database. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 469–507. [Google Scholar] [CrossRef]
- Rothman, L.S.; Rinsland, C.P.; Goldman, A.; Massie, S.T.; Edwards, D.P.; Flaud, J.-M.; Perrin, A.; Dana, V.; Mandin, J.-Y.; Schroeder, J.; et al. The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 665–710. [Google Scholar] [CrossRef]
- Sandu, I.; Beljaars, A.; Bechtold, P.; Mauritsen, T.; Balsamo, G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 2013, 5, 117–133. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Svensson, G.; Baas, P.; Basu, S.; Beare, B.; Beljaars, A.C.M.; Bosveld, F.C.; Cuxart, J.; Lindvall, J.; Steeneveld, G.J.; et al. Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models. Bull. Am. Meteor. Soc. 2013, 94, 1691–1706. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Schweiger, A.; Lindsay, R. Observations and Modeling of Atmospheric Profiles in the Arctic Seasonal Ice Zone. Mon. Weather Rev. 2015, 143, 39–53. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Oluleye, A.; Chilekwu, O.E. Analysis of temporal and spatial variability of total column ozone over West Africa using daily TOMS measurements. Atmos. Pollut. Res. 2013, 4, 387–397. [Google Scholar] [CrossRef]
- Madhu, V. Spatial and Temporal Variability of Total Column Ozone over the Indian Subcontinent: A Study Based on Nimbus-7 TOMS Satellite. Atmos. Clim. Sci. 2014, 4, 884–898. [Google Scholar] [CrossRef]
- Ardanuy, P.E.; Stowe, L.L.; Gruber, A.; Weiss, M. Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus 7 observations. J. Geophys. Res. 1991, 98, 18537–18549. [Google Scholar] [CrossRef]
- Gupta, S.K.; Staylor, F.W.; Darnell, W.L.; Wilber, A.C.; Ritchey, N.A. Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data. J. Geophys. Res. 1993, 98, 20761–20778. [Google Scholar] [CrossRef]
- Hoff, T.E.; Kleissl, J.; Perez, R.; Renne, D.; Stein, J.S. Reporting of irradiance model relative errors. In Proceedings of the 2012 American Solar Energy Society Annual Conference (ASES), Denver, CO, USA, 13–17 May 2012. [Google Scholar]
- Drame, M.S.; Ceamanos, X.; Roujean, J.L.; Boone, A.; Lafore, J.P.; Carrer, D.; Geoffroy, O. On the Importance of Aerosol Composition for Estimating Incoming Solar Radiation: Focus on the Western African Stations of Dakar and Niamey during the Dry Season. Atmosphere 2015, 6, 1608–1632. [Google Scholar] [CrossRef]
- Vermeulen, A.; Descloitres, J. Final Description Document on SEVIRI Aerosol Product over Land; ECMWF/MACCII: Reading, UK, 2014. [Google Scholar]
- Oikarinen, L. Effect of surface albedo variations on UV-visible limb-scattering measurements of the atmosphere. J. Geophys. Res. 2002, 107, 4404. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Song, D.-X. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 2014, 119, 10281–10298. [Google Scholar] [CrossRef]
- Fondsdesol. Available online: http://newtec.univ-lille1.fr/fondsdesol/ (accessed on 11 June 2017).
- Long, C.N.; Ackerman, T.P. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res. Atmos. 2000, 105, 15609–15626. [Google Scholar] [CrossRef]
IHAZE | Description |
---|---|
0 | No aerosol or cloud attenuation included in the calculation |
1 | RURAL extinction; default VIS = 23 km |
2 | RURAL extinction; default VIS = 5 km |
5bis | URBAN extinction; default VIS = 23 km |
5 | URBAN extinction; default VIS = 5 km |
10 | DESERT extinction; sets visibility from wind speed |
ECMWF vs Measures | Measures Annual Average | ECMWF Annual Average | R | RMSE | MBE |
---|---|---|---|---|---|
P (mbar) | 966.553 | 966.290 | 0.953 | 0.868 | |
T (C) | 33.2 | 31.6 | 0.878 | 2.4 | |
H (%) | 35.0 | 36.4 | 0.952 | 7.2 | 1.3 |
Va (m/s) | 1.3 | 2.5 | 0.428 | 1.6 | 1.2 |
Standard Profiles | ECMWF Profiles | |||||||
---|---|---|---|---|---|---|---|---|
IHAZE | R | RMSE (%) | MBE (%) | MAE (%) | R | RMSE (%) | MBE (%) | MAE (%) |
0 | 0.781 | 6.430 | 5.170 | 0.819 | 5.308 | 3.931 | ||
1 | 0.778 | 9.158 | 8.364 | 0.814 | 7.541 | 6.629 | ||
2 | 0.772 | 20.182 | 19.731 | 0.802 | 19.331 | 18.865 | ||
5bis | 0.776 | 14.200 | 13.646 | 0.804 | 13.768 | 13.187 | ||
5 | 0.768 | 38.507 | 38.131 | 0.766 | 41.633 | 41.275 | ||
10 | 0.779 | 6.891 | 5.754 | 0.817 | 5.544 | 4.326 |
R | RMSE (%) | MBE (%) | MAE (%) | |
---|---|---|---|---|
Dry period 1 | 0.759 | 6.702 | 5.604 | |
Dry period 2 | 0.909 | 2.610 | 2.314 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotsing Talla, C.; Njomo, D.; Cornet, C.; Dubuisson, P.; Akana Nguimdo, L. ECMWF Atmospheric Profiles in Maroua, Cameroon: Analysis and Overview of the Simulation of Downward Global Solar Radiation. Atmosphere 2018, 9, 44. https://doi.org/10.3390/atmos9020044
Fotsing Talla C, Njomo D, Cornet C, Dubuisson P, Akana Nguimdo L. ECMWF Atmospheric Profiles in Maroua, Cameroon: Analysis and Overview of the Simulation of Downward Global Solar Radiation. Atmosphere. 2018; 9(2):44. https://doi.org/10.3390/atmos9020044
Chicago/Turabian StyleFotsing Talla, Cyrille, Donatien Njomo, Céline Cornet, Philippe Dubuisson, and Leonard Akana Nguimdo. 2018. "ECMWF Atmospheric Profiles in Maroua, Cameroon: Analysis and Overview of the Simulation of Downward Global Solar Radiation" Atmosphere 9, no. 2: 44. https://doi.org/10.3390/atmos9020044
APA StyleFotsing Talla, C., Njomo, D., Cornet, C., Dubuisson, P., & Akana Nguimdo, L. (2018). ECMWF Atmospheric Profiles in Maroua, Cameroon: Analysis and Overview of the Simulation of Downward Global Solar Radiation. Atmosphere, 9(2), 44. https://doi.org/10.3390/atmos9020044