Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China
Abstract
:1. Introduction
2. Experiments
2.1. Sample Collection and Analysis
2.2. Health Risk Assessment
3. Results and Discussion
3.1. The Characteristics of Heavy Metals in PM2.5
3.2. Source Identification
3.3. Health Risk Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, P.; Zhang, C.; Mu, Y.; Liu, C.; Xue, C.; Ye, C. The possible contribution of the periodic emissions from farmers’ activities in the North China Plain to atmospheric water-soluble ions in Beijing. Atmos. Chem. Phys. 2016, 16, 10097–10109. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, C.; Xue, C.; Mu, Y.; Liu, J.; Zhang, Y.; Tian, D. The contribution of residential coal combustion to atmospheric PM2.5 in northern China during winter. Atmos. Chem. Phys. 2017, 17, 11503–11520. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Buseck, P.R.; Posfai, M. Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. USA 1999, 96, 3372–3379. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Eichler, E.; Wiedensohler, A.; Heintzenberg, J.; Zhang, Y.; Hu, M. Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China. J. Geophys. Res. 2006, 11. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bi, X.; Zhang, J.; Wu, J.; Feng, Y. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 2015, 20, 1041–1109. [Google Scholar] [CrossRef]
- Block, M.L.; Elder, A.; Auten, R.L.; Bilbo, S.D.; Chen, H.; Chen, J.C.; Cory-Slechta, D.A.; Costa, D.; Diaz-Sanchez, D.; Dorman, D.C.; et al. The outdoor air pollution and brain health workshop. Neurotoxicology 2012, 33, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Cacciottolo, M.; Wang, X.; Driscoll, I.; Woodward, N.; Saffari, A.; Reyes, J.; Serre, M.L.; Vizuete, W.; Sioutas, C.; Morgan, T.E.; et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Niu, C.; Zhou, J.; Kong, S.; Bai, Z.; Xu, H. Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: An exposure panel study in Tianjin, China. Air Qual. Atmos. Health 2015, 8, 347–357. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, C.H.; Liao, C.C. Respiratory deposition and health risk of inhalation of particle-bound heavy metals in the carbon black feeding area of a tire manufacturer. Air. Qual. Atmos. Health 2017. [Google Scholar] [CrossRef]
- Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk assessment of environmental mixture effects. RSC Adv. 2016, 6, 47844–47857. [Google Scholar] [CrossRef]
- Rodriguez-Espinosa, P.F.; Flores-Rangel, R.M.; Mugica-Alvarez, V.; Morales-Garcia, S.S. Sources of trace metals in PM10 from a petrochemical industrial complex in Northern Mexico. Air Qual. Atmos. Health 2017, 10, 69–84. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Hellström, L.; Elinder, C.-G.; Dahlberg, B.; Lundberg, M.; Järup, L.; Persson, B.; Axelson, O. Cadmium exposure and end-stage renal disease. Am. J. Kidney Dis. 2001, 38, 10011–11008. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Teratogen update: Lead and pregnancy. Birth Defect. Res. Part A Clin. Mol. Teratol. 2005, 73, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Shi, Z.; Jones, T.P.; Li, J.; Whittaker, A.G.; BéruBé, K.A. Bioreactivity of particulate matter in Beijing air: Results from plasmid DNA assay. Sci. Total Environ. 2006, 367, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Shang, Q.; Wan, C.; Song, P.; Ma, C.; Cao, L. Characteristics and sources of heavy metals in PM2.5 during a typical haze episode in rural and urban areas in Taiyuan, China. Atmosphere 2018, 9, 2. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS). Part A (1989): Human Health Evaluation Manual; Part E (2005): Supplemental Guidance for Dermal Risk Assessment; Part F (2009): Supplemental Guidance for Inhalation Risk Assessment. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 24 January 2018).
- USEPA. Risk Characterization Handbook. 2000. Available online: https://www.epa.gov/risk/risk-characterization-handbook (accessed on 24 January 2018).
- Wang, Z.; Liu, S.; Chen, X.; Lin, C. Estimates of the exposed dermal surface area of Chinese in view of human health risk assessment. J. Saf. Environ. 2008, 8, 1521–1556. (In Chinese) [Google Scholar]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 38, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Shi, G.L.; Liu, G.R.; Xu, J.; Tian, Y.Z.; Zhang, Y.F.; Feng, Y.C.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Pey, J.; Minguillón, M.; Pérez, N.; Alastuey, A.; Viana, M. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos. Chem. Phys. 2008, 8, 111–128. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Levels (RSLs)—Generic Tables (November 2017). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017 (accessed on 24 January 2018).
- Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2017, 233, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, Z.; Chen, Y.; Chen, Z.; Xu, S. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229. [Google Scholar] [CrossRef]
- Fang, G.; Chang, C.; Chu, C.; Wu, Y.; Fu, P.; Yang, I.; Chen, M. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5–10 aerosols at a farm sampling site in Taiwan, Taichung. Sci. Total Environ. 2003, 308, 157–166. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J.M. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ. Monit. Assess. 2006, 119, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Duan, J.; Ma, Y.; Yang, F.M.; Cheng, Y.; He, K.B.; Yu, Y.C.; Wang, J.W. Source of atmospheric heavy metals in winter in Foshan, China. Sci. Total Environ. 2014, 493, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Hieu, N.T. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual. Res. 2011, 11, 679–688. [Google Scholar] [CrossRef]
- Chang, S.H.; Wang, K.S.; Chang, H.F.; Ni, W.W.; Wu, B.J.; Wong, R.H.; Lee, H.S. Comparison of source identification of metals in road-dust and soil. Soil Sediment Contam. 2009, 18, 669–683. [Google Scholar] [CrossRef]
- Lee, B.K.; Jun, N.Y.; Lee, H.K. Comparison of particular matter characteristics before, during and after asian dust events in incheon and Ulsan, Korea. Atmos. Environ. 2004, 38, 1535–1545. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Xu, Y.; Chen, J.; Yin, L.; Shang, X.; Xu, L. Chemical characteristics of particulate matter during a heavy dust episode in a coastal city, Xiamen, 2010. Aerosol Air Qual. Res. 2011, 11, 299–308. [Google Scholar] [CrossRef]
- Lim, J.M.; Lee, J.H.; Moon, J.H.; Chung, Y.S.; Kim, K.H. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos. Res. 2010, 96, 53–64. [Google Scholar] [CrossRef]
- Taner, S.; Pekey, B.; Pekey, H. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Sci. Total Environ. 2013, 454–455, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Manoli, E.; Voutsa, D.; Samara, C. Chemical Characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ. 2002, 36, 949–961. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Long, Z.; Ni, S.; Shi, Z.; Zhang, C. Characteristics, sources and health risk assessment of trace metals in PM10 in Panzhihua, China. Bull. Environ. Contam. Toxicol. 2016, 98, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.; de la Rosa, J.D.; Sánchez de la Campa, A.M.; González-Castanedo, Y.; Fernández-Caliani, J.C.; Gonzalez, I.; Romero, A. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto Mines, Spain). Sci. Total Environ. 2013, 449, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.G.; Nemitz, E.; Shi, J.P.; Harrison, R.M.; Greenwood, J.C. Size distribution of trace metals in atmospheric aerosol in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Mansha, M.; Ghauri, B.; Rahman, S.; Amman, A. Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci. Total Environ. 2012, 425, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Samara, C.; Voutsa, D. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 2005, 59, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Liacos, J.W.; Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. Sci. Total Environ. 2012, 435–436, 159–166. [Google Scholar] [CrossRef] [PubMed]
Parameters | Definition | Values | References | |
---|---|---|---|---|
Children | Adult | |||
C (µg m−3 or mg kg−1) | Concentrations of elements | 95% UCL | 95% UCL | This study |
InhR (m3 day−1) | Inhalation rate | 7.6 | 20 | [20] |
ED (year) | Exposure duration | 6 | 24 | [19,20] |
EF (days year−1) | Exposure frequency | 180 | 180 | This study |
BW (kg) | Body weight | 15 | 70 | [19] |
AT (day) | Average exposure time | |||
(for non-carcinogenic) | ED × 365 | ED × 365 | [20] | |
(for carcinogenic) | 70 × 365 | 70 × 365 | [20] | |
IngR (mg day−1) | Ingestion rate | 200 | 100 | [19,24] |
SA (cm2) | Exposed skin area | 1077.5 | 2011.25 | [22] |
SL (mg cm−2 day−1) | Skin adherence factor | 0.2 | 0.07 | [19,20] |
ABS | Dermal absorption factor | As (0.03) | As (0.03) | [19,23,25] |
Cd (0.001) | Cd (0.001) | [19,23,24] | ||
Others (0.01) | Others (0.01) | [19] |
Parameters | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|
RfD | Inhalation | 1.00 × 10−4 | 5.00 × 10−5 | 5.00 × 10−5 | 1.50 × 10−5 | 1.00 × 10−5 | |||
Ingestion | 3.00 × 10−3 | 1.40 × 10−1 | 5.00 × 10−2 | 4.00 × 10−2 | 3.00 × 10−1 | 3.00 × 10−4 | 1.00 × 10−3 | 3.50 × 10−3 | |
Dermal | 2.50 × 10−2 | 1.00 × 100 | 4.00 × 10−2 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 2.50 × 10−2 | 1.00 × 100 | |
IUR | 1.20 × 10−2 | / | 2.40 × 10−4 | / | / | 4.30 × 10−3 | 1.80 × 10−3 | 8.00 × 10−5 | |
SF | 5.00 × 10−1 | / | 8.40 × 10−2 | / | / | 1.50 × 100 | 6.40 × 10−1 | 2.80 × 10−1 | |
G | 2.50 × 10−2 | / | 4.00 × 10−2 | / | / | 1.00 × 100 | 2.50 × 10−2 | 1.00 × 100 |
Species | NUC | Beijing | Shanghai | Taichung | Nanjing | Guangzhou | Foshan | |
---|---|---|---|---|---|---|---|---|
Spring (n = 48) | Winter (n = 37) | Winter [27] | Winter [28] | Annual [29] | September [19] | [30] | Winter [31] | |
PM2.5 | 97.3 ± 35.2 | 205.9 ± 91.3 | 126 | 75.89 | 42.8 ± 17.4 | / | 91.4 ± 21 | 136.4 ± 40.5 |
Cr | 63.6 ± 45.6 | 105.0 ± 80.8 | 30 | 7 | 33.5 ± 48 | 22.5 ± 7.8 | 51 ± 11 | / |
Mn | 171.9 ± 64.8 | 166.5 ± 78.8 | 70 | 62 | 19.1 ± 20.5 | 48.3 ± 6.4 | 39 ± 8 | 200.6 ± 129.4 |
Ni | 25.3 ± 18.9 | 38.8 ± 30.8 | 40 | 6 | 11.8 ± 29.9 | 6.7 ± 3.7 | 33 ± 7 | / |
Cu | 83.1 ± 48.3 | 115.6 ± 52.8 | 200 | 13 | 11.5 ± 19.9 | 65.7 ± 32.1 | 109 ± 23 | 283.8 ± 174.7 |
Zn | 338.2 ± 147.8 | 554.0 ± 161.6 | 310 | 235 | 177.8 ± 103.0 | 230 ± 69.3 | 680 ± 146 | 2214 ± 1438 |
As | 1.8 ± 1.1 | 5.5 ± 3.5 | 10 | / | / | 4.3 ± 2.3 | 81 ± 17 | 76.6 ± 49.1 |
Cd | 2.8 ± 0.3 | 10.7 ± 2.4 | 0 | 1 | 4.3 ± 8.5 | 1.3 ± 0.1 | 14 ± 3 | 42.6 ± 45.2 |
Pb | 214.3 ± 109.0 | 517.1 ± 185.3 | 150 | 64 | 283.1 ± 252.9 | 81.5 ± 12.0 | 373 ± 80 | 675.7 ± 378.5 |
Heavy Metals | Spring | Winter | ||||
---|---|---|---|---|---|---|
FI | FII | FIII | FI | FII | FIII | |
Cr | 0.891 | 0.753 | 0.458 | |||
Mn | 0.925 | 0.478 | 0.920 | |||
Ni | 0.856 | 0.263 | 0.935 | |||
Cu | 0.699 | 0.249 | 0.787 | 0.415 | 0.320 | |
Zn | 0.761 | 0.534 | 0.215 | 0.614 | 0.476 | |
As | 0.672 | 0.414 | 0.409 | 0.819 | 0.219 | |
Cd | 0.952 | 0.985 | ||||
Pb | 0.407 | 0.781 | 0.243 | 0.948 | 0.207 | |
Variance (%) | 49.47 | 23.86 | 13.31 | 56.59 | 21.91 | 14.26 |
Heavy Metals | Carcinogenic (CR) | Non-Carcinogenic (HQ) | ||
---|---|---|---|---|
Children | Adults | Children | Adults | |
Inhalation exposure | ||||
Cr | 7.27 × 10−5 | 2.91 × 10−4 | 1.44 × 10−2 | 1.44 × 10−2 |
Mn | 2.28 × 100 | 2.28 × 100 | ||
Ni | 4.78 × 10−7 | 1.91 × 10−6 | 4.64 × 10−1 | 4.64 × 10−1 |
As | 7.83 × 10−7 | 3.13 × 10−6 | 1.42 × 10−1 | 1.42 × 10−1 |
Cd | 4.53 × 10−7 | 1.81 × 10−6 | 2.93 × 10−1 | 2.93 × 10−1 |
Pb | 1.70 × 10−6 | 6.79 × 10−6 | ||
Sum | 7.61 × 10−5 | 3.04 × 10−4 | 3.19 × 100 | 3.19 × 100 |
Ingestion exposure | ||||
Cr | 2.72 × 10−4 | 1.36 × 10−4 | 2.12 × 100 | 2.65 × 10−1 |
Mn | 7.31 × 10−2 | 9.14 × 10−3 | ||
Ni | 1.50 × 10−5 | 7.52 × 10−6 | 4.18 × 10−2 | 5.22 × 10−3 |
Cu | 1.44 × 10−1 | 1.80 × 10−2 | ||
Zn | 7.26 × 10−2 | 9.07 × 10−3 | ||
As | 2.48 × 10−5 | 1.24 × 10−5 | 6.38 × 10−1 | 7.97 × 10−2 |
Cd | 1.45 × 10−5 | 7.24 × 10−6 | 3.64 × 10−1 | 3.30 × 10−2 |
Pb | 5.35 × 10−4 | 2.67 × 10−4 | 6.37 × 100 | 7.96 × 10−1 |
Sum | 8.62 × 10−4 | 4.31 × 10−4 | 9.72 × 100 | 1.21 × 100 |
Dermal exposure | ||||
Cr | 1.17 × 10−4 | 2.19 × 10−4 | 9.13 × 10−1 | 4.26 × 10−1 |
Mn | 7.88 × 10−4 | 3.36 × 10−4 | ||
Ni | 4.05 × 10−6 | 7.56 × 10−6 | 1.13 × 10−2 | 5.25 × 10−3 |
Cu | 1.55 × 10−3 | 7.25 × 10−4 | ||
Zn | 7.82 × 10−4 | 3.65 × 10−4 | ||
As | 8.00 × 10−7 | 1.49 × 10−6 | 2.06 × 10−2 | 9.62 × 10−3 |
Cd | 6.24 × 10−7 | 1.17 × 10−6 | 1.14 × 10−2 | 5.31 × 10−3 |
Pb | 5.76 × 10−6 | 1.08 × 10−5 | 6.86 × 10−2 | 3.20 × 10−2 |
Sum | 1.29 × 10−4 | 2.40 × 10−4 | 1.03 × 100 | 4.80 × 10−1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Shang, Q.; Wan, C. Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China. Atmosphere 2018, 9, 46. https://doi.org/10.3390/atmos9020046
Liu K, Shang Q, Wan C. Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China. Atmosphere. 2018; 9(2):46. https://doi.org/10.3390/atmos9020046
Chicago/Turabian StyleLiu, Kankan, Qingmin Shang, and Changyuan Wan. 2018. "Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China" Atmosphere 9, no. 2: 46. https://doi.org/10.3390/atmos9020046
APA StyleLiu, K., Shang, Q., & Wan, C. (2018). Sources and Health Risks of Heavy Metals in PM2.5 in a Campus in a Typical Suburb Area of Taiyuan, North China. Atmosphere, 9(2), 46. https://doi.org/10.3390/atmos9020046