Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Field Measurements
2.3. Statistical Analyses
3. Results
3.1. Soil Water Changes and Soil Compaction
3.2. Above- and Below-Ground Biomass and Species Richness
3.3. The Comprehensive Performance of Above-Ground Biomass, Soil Compaction, Soil Water Storage and Plant Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.T.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Lizama, V.; García-Esparza, M.J.; Abrisqueta, I.; Álvarez, I. Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agric. Water Manag. 2016, 170, 110–119. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of smap surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Zhang, D.D.; Yang, B.; Fang, K.; Yue, P.H. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim. Dyn. 2017, 48, 649–660. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Simard, R.R.; Belanger, G.; Laverdiere, M.R.; Chabot, R. Mixed papermill residues affect yield, nutritive value and nutrient use of a grass-alfalfa sward. Can. J. Soil Sci. 2001, 81, 103–111. [Google Scholar] [CrossRef]
- Morales, M.R.; Cordero, S.A.; Crespo, M.C. Selection of alfalfa “Tierra de Campos” for grazing and for harvesting incorporating identification through homozygosis for an isozymatic Locus. Información Técnica Económica Agraria 2001, 97, 60–72. [Google Scholar]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crop. Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Jia, X.X.; Shao, M.A.; Zhang, C.C.; Zhao, C.L. Regional temporal persistence of dried soil layer along south-north transect of the Loess Plateau, China. J. Hydrol. 2015, 528, 152–160. [Google Scholar] [CrossRef]
- Alexander, P.; Moran, D.; Smith, P.; Hastings, A.; Wang, S.; Sünnenberg, G.; Lovett, A.; Tallis, M.J.; Casella, E.; Taylor, G.; et al. Estimating UK perennial energy crop supply using farm-scale models with spatially disaggregated data. GCB Bioenergy 2014, 6, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, R.; Knudsen, M.T.; Djomo, S.N.; Corona, A.; Birkved, M.; Dalgaard, T. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Sci. Total Environ. 2017, 586, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, H.L.; Gao, X.; Qi, Y.S.; Xu, X. Seasonal patterns in water uptake for Medicago sativa, grown along an elevation gradient with shallow groundwater table in Yanchi county of Ningxia, northwest China. J. Arid Land 2016, 8, 1–14. [Google Scholar] [CrossRef]
- Ridley, A.M.; Christy, B.; Dunin, F.X.; Haines, P.J.; Wilson, K.F.; Ellington, A. Lucerne in crop rotations on the Riverine Plains. Crop Pasture Sci. 2001, 52, 263–277. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Zhang, Z.H.; Wang, X.L.; Guo, R.Y.; Siddique, K.H.M. Productivity and water use of alfalfa and subsequent crops in the semiarid Loess Plateau with different stand ages of alfalfa and crop sequences. Field Crop. Res. 2009, 114, 58–65. [Google Scholar] [CrossRef]
- Lothar, M.; Behrendt, A.; Schalitz, G.; Schindler, U. Above-ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. J. Agric. Water Manag. 2005, 75, 117–136. [Google Scholar]
- Petitjean, C.; Hénault, C.; Perrin, A.S.; Pontet, C.; Metay, A.; Bernoux, M.; Jehanno, T.; Viard, A.; Roggy, J.C. Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method. Agric. Ecosyst. Environ. 2015, 208, 64–74. [Google Scholar] [CrossRef]
- Lamb, J.F.S.; Jung, H.J.G.; Sheaffer, C.C.; Samac, D.A. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci. 2007, 47, 1407–1415. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crop. Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W. Dryland soil carbon dynamics under alfalfa and durum-forage cropping sequences. Soil Tillage Res. 2011, 113, 30–37. [Google Scholar] [CrossRef]
- Gates, J.B.; Scanlon, B.R.; Mu, X.; Zhang, L. Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeol. J. 2011, 19, 865–875. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Y.; Jia, C.; Huang, Z.; He, H.H.; Han, F.P.; Shen, W.B.; Wu, G.L. Soil water storage compensation potential of herbaceous energy crops in semi-arid region. Field Crop. Res. 2018, 223, 41–47. [Google Scholar] [CrossRef]
- Mitchell, M.L.; Norman, H.C.; Whalley, R.D.B. Use of functional traits to identify Australian forage grasses, legumes and shrubs for domestication and use in pastoral areas under a changing climate. Crop Pasture Sci. 2015, 66, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, R.M.; Condon, L.E. Connections between groundwater flow and transpiration partitioning. Science 2016, 353, 377–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.J.; Han, C.L.; Fan, J.W.; Shi, X.P.; Kong, M.; Shi, X.Y.; Siddique, K.H.M.; Zhao, Y.Y.; Li, F.M. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop. Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Chen, W.L.; Wang, J.L. Response of temporal variation of soil moisture to vegetation in semi-arid Loess Plateau, China. Catena 2014, 115, 123–133. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Ahmad, N.; Hassan, F.U.; Belford, R.K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum): I. Compaction. Field Crop. Res. 2009, 110, 54–60. [Google Scholar] [CrossRef]
- McCallum, M.H.; Peoples, M.B.; Connor, D.J. Contributions of nitrogen by grassland pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.) based pasture ley in the Victorian Wimmera. Aust. J. Agric. Res. 2000, 51, 13–22. [Google Scholar] [CrossRef]
- Fichtner, A.; Härdtle, W.; Li, Y.; Bruelheide, H.; Kunz, M.; Von, O.G. From competition to facilitation: How tree species respond to neighbourhood diversity. Ecol. Lett. 2017, 20, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Hrivnák, R.; Gömöry, D.; Slezák, M.; Ujházy, K.; Hédl, R.; Jarčuška, B.; Ujházyová, M. Species richness pattern along altitudinal gradient in central European beech forests. Folia Geobot. 2014, 49, 425–441. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, J.; Tahir, M.N.; Fang, X.Y. Validation of the EPIC model and its utilization to research the sustainable recovery of soil desiccation after alfalfa (Medicago sativa L.) by grain crop rotation system in the semi-humid region of the Loess Plateau. Agric. Ecosyst. Environ. 2012, 161, 152–160. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Huang, Z.; Cui, Z.; Lu, R.; Zhang, R.-Q.; Liu, Y.; López-Vicente, M.; Ahirwal, J.; Wei, X.-H.; Wu, G.-L. Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water 2018, 10, 1538. https://doi.org/10.3390/w10111538
Sun L, Huang Z, Cui Z, Lu R, Zhang R-Q, Liu Y, López-Vicente M, Ahirwal J, Wei X-H, Wu G-L. Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water. 2018; 10(11):1538. https://doi.org/10.3390/w10111538
Chicago/Turabian StyleSun, Lei, Ze Huang, Zeng Cui, Rong Lu, Rui-Qi Zhang, Yu Liu, Manuel López-Vicente, Jitendra Ahirwal, Xue-Hong Wei, and Gao-Lin Wu. 2018. "Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area" Water 10, no. 11: 1538. https://doi.org/10.3390/w10111538
APA StyleSun, L., Huang, Z., Cui, Z., Lu, R., Zhang, R.-Q., Liu, Y., López-Vicente, M., Ahirwal, J., Wei, X.-H., & Wu, G.-L. (2018). Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water, 10(11), 1538. https://doi.org/10.3390/w10111538