Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments
Abstract
:1. Introduction
2. Materials and Methods
- Ford Brook (FB) is an urbanized tributary fed by effluent from two WwTw;
- Plants Brook (PB) is an urbanized tributary with no WwTw effluent;
- River Blythe (BL) is a largely rural tributary with WwTw effluent from Barston WwTw;
- River Bourne (RB) is a rural tributary with no WwTw effluent.
- unnatural homogeneous colour such as blue or yellow;
- unnatural shape such as spherical;
- homogenous texture;
- have homogenous width and are not tapered at the end.
- fragments,
- commercial fragments (melted plastic appearance),
- spherical beads,
- irregular beads,
- foam,
- fibres,
- film.
3. Results
3.1. Microplastic Abundance
3.2. Microplastic Particle Shapes
3.3. Microplastic Sizes
3.4. FT-IR Based Chemical Characterisation of Microplastics
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Rochman, C.M. Microplastics research—From sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Boil. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbyszewski, M.; Corcoran, P.L.; Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 2014, 40, 288–299. [Google Scholar] [CrossRef]
- Imhof, H.K.; Ivleva, N.P.; Schmid, J.; Niessner, R.; Laforsch, C. Contamination of beach sediments of a subalpine lake with microplastic particles. Curr. Boil. 2013, 23, R867–R868. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.D.; Loder, M.G.; Fricke, N.F.; Lang, T.; Griebeler, E.M.; Janke, M.; Gerdts, G. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar. Pollut. Bull. 2016, 102, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Norkko, I.; Lehtiniemi, M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull. 2016, 102, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.E.; Shumway, S.E. Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. J. Exp. Mar. Boil. Ecol. 2004, 300, 83–130. [Google Scholar] [CrossRef]
- Besseling, E.; Wegner, A.; Foekema, E.M.; Van Den Heuvel-Greve, M.J.; Koelmans, A.A. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ. Sci. Technol. 2012, 47, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, W.; Bender, C.; Porcher, J.M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environ. Res. 2014, 128, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Steer, M.; Cole, M.; Thompson, R.C.; Lindeque, P.K. Microplastic ingestion in fish larvae in the western English Channel. Environ. Pollut. 2017, 226, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Au, S.Y.; Bruce, T.F.; Bridges, W.C.; Klaine, S.J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 2015, 34, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Rehse, S.; Kloas, W.; Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 2016, 153, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Nasser, F.; Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 2016, 137, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.R.; Thompson, J.T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Boil. Ecol. 2009, 368, 22–29. [Google Scholar] [CrossRef]
- Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 2011, 62, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.A.; Bratton, S.P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Vermaire, J.C.; Pomeroy, C.; Herczegh, S.M.; Haggart, O.; Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. FACETS 2017, 2, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef] [PubMed]
- Nel, H.A.; Dalu, T.; Wasserman, R.J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 2018, 612, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Oguchi, T.; Neal, C. Pollution regimes and variability in river water quality across the Humber catchment: Interrogation and mapping of an extensive and highly heterogeneous spatial dataset. Sci. Total Environ. 2000, 251, 27–43. [Google Scholar] [CrossRef]
- Elliott, S.; Lead, J.R.; Baker, A. Characterisation of the fluorescence from freshwater, planktonic bacteria. Water Res. 2006, 40, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. Lond. B Boil. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Nuelle, M.T.; Dekiff, J.H.; Remy, D.; Fries, E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014, 184, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.H.M.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar] [PubMed]
- Helm, P.A. Improving microplastics source apportionment: A role for microplastic morphology and taxonomy? Anal. Methods 2017, 9, 1328–1331. [Google Scholar] [CrossRef]
- Ng, K.L.; Obbard, J.P. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, J.; Tan, Z.; Gao, Y.; Zhan, Z.; Chen, Q.; Cai, L. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 2017, 171, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine Coast. Shelf Sci. 2013, 130, 54–61. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Bakir, A.; Rowland, S.J.; Thompson, R.C. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 2015, 99, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Johnson, A.C.; Keller, V.; Wells, C.; Holmes, M.G.R.; Young, A.R. Catchment Risk Assessment of Steroid Oestrogens from Sewage Treatment Works; Environment Agency: Bristol, UK, 2008; Available online: http://nora.nerc.ac.uk/2810/1/SCHO0308BNVO-e-e.pdf (accessed on 7 September 2017).
- McCormick, A.R.; Hoellein, T.J.; London, M.G.; Hittie, J.; Scott, J.W.; Kelly, J.J. Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere 2016, 7, e01556. [Google Scholar] [CrossRef]
- Corcoran, P.L.; Norris, T.; Ceccanese, T.; Walzak, M.J.; Helm, P.A.; Marvin, C.H. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ. Pollut. 2015, 204, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, R.; Turner, S.D.; Rose, N.L. Microplastics in the sediments of a UK urban lake. Environ. Pollut. 2017, 229, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, T.; Aravinthan, A.; Lakshmi, K.; Venkatesan, R.; Vedaprakash, L.; Doble, M. Fouling and stability of polymers and composites in marine environment. Int. Biodeterior. Biodegrad. 2011, 65, 276–284. [Google Scholar] [CrossRef]
- Wallace, J.B.; Merritt, R.W. Filter-feeding ecology of aquatic insects. Annu. Rev. Entomol. 1980, 25, 103–132. [Google Scholar] [CrossRef]
- Brennan, A.; McLachlan, A.J. Tubes and tube-building in a lotic chironomid (Diptera) community. Hydrobiologia 1979, 67, 173–178. [Google Scholar] [CrossRef]
- Death, R.G. The effect of patch disturbance on stream invertebrate community structure: The influence of disturbance history. Oecologia 1996, 108, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, C.D.; Arbuckle, C.J.; Townsend, C.R. Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. J. N. Am. Benthol. Soc. 2000, 19, 82–93. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Gelmann, E.R.; Palmer, M.A. Net spinning caddisflies as stream ecosystem engineers: The influence of Hydropsyche on benthic substrate stability. Funct. Ecol. 2004, 18, 381–387. [Google Scholar] [CrossRef]
Sites | ||||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | |
Velocity ms−1 | 0.35 | 0.26 | 0.31 | 0.22 | 0.47 | 0.16 |
Plastic particles 100 g−1 | 16 | 20 | 35 | 19 | 8 | 2 |
% 2–4 mm (# particles) | 24.0 (5) | 15.6 (0) | 2.2 (16) | 17.8 (16) | 17.7 (2) | 15.2 (0) |
% 1–2 mm (# particles) | 22.3 (15) | 24.0 (5) | 1.4 (61) | 7.0 (20) | 9.6 (6) | 5.3 (0) |
% 250 µm–1 mm (# particles) | 48.8 (56) | 51.8 (53) | 86.7 (188) | 66.9 (20) | 61.5 (18) | 67.1 (9) |
% 63 µm–250 µm (# particles) | 4.8 (63) | 8.6 (104) | 9.7 (71) | 8.3 (35) | 11.2 (15) | 12.5 (3) |
Fibre | 19 | 43 | 75 | 20 | 7 | 11 |
Fragment | 58 | 85 | 165 | 42 | 24 | 0 |
Sphere | 51 | 24 | 46 | 22 | 5 | 1 |
Commercial Fragment | 5 | 6 | 26 | 1 | 1 | 0 |
Irregular Sphere | 2 | 2 | 9 | 1 | 0 | 0 |
Foam | 0 | 0 | 6 | 3 | 2 | 0 |
Film | 4 | 2 | 9 | 2 | 2 | 0 |
Sites | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FBu | FBm | FBd | PBu | PBm | PBd | BLu | BLm | BLd | BOu | BOm | BOd | |
Velocity ms−1 | 0.73 | 0.21 | 0.84 | 0.13 | 0.06 | 0.2 | 0.18 | 0.28 | 0.22 | 0.1 | 0.08 | 0.16 |
Plastic particles 100 g−1 | 3 | 16 | 6 | 17 | 34 | 17 | 4 | 2 | 2 | 2 | 3 | 0 |
% 2–4 mm (# particles) | 28.6 (1) | 30.5 (2) | 26.4 (4) | 28.6 (5) | 24.7 (2) | 15.4 (3) | 5.7 (1) | 13.5 (0) | 9.7 (0) | 15.7 (0) | 21.7 (4) | 48.9 (0) |
% 1–2 mm (# particles) | 17.8 (3) | 14.4 (14) | 13.3 (11) | 21.5 (16) | 12.8 (34) | 16.0 (20) | 2.0 (5) | 5.7 (2) | 4.6 (1) | 12.6 (0) | 13.4 (1) | 16.5 (0) |
% 250 µm–1 mm (# particles) | 44.5 (4) | 46.8 (91) | 46.7 (6) | 45.8 (72) | 47.0 (155) | 61.0 (77) | 71.9 (11) | 61.9 (10) | 61.0 (5) | 65.3 (7) | 55.4 (0) | 29.4 (1) |
% 63 µm–250 µm (# particles) | 9.1 (7) | 8.3 (26) | 13.7 (10) | 4.2 (23) | 15.5 (35) | 7.6 (23) | 20.3 (10) | 18.8 (6) | 24.7 (6) | 6.4 (4) | 9.4 (8) | 5.2 (0) |
Fibre | 12 | 31 | 21 | 17 | 24 | 13 | 13 | 11 | 6 | 11 | 7 | 0 |
Fragment | 3 | 39 | 9 | 71 | 142 | 76 | 11 | 4 | 6 | 0 | 3 | 1 |
Sphere | 0 | 55 | 0 | 8 | 4 | 8 | 1 | 3 | 0 | 0 | 0 | 0 |
Commercial Fragment | 0 | 1 | 0 | 14 | 25 | 23 | 0 | 0 | 0 | 0 | 1 | 0 |
Irregular Sphere | 0 | 3 | 0 | 5 | 20 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Foam | 0 | 0 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 1 | 0 |
Film | 0 | 4 | 1 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Study Location | Microplastic Count | Citation |
---|---|---|
River Tame, UK | 16.5 particles 100 g−1 (mean) | This study |
River Thames, UK | 35 particles 100 g−1 (mean) | Horton et al. [1] |
Mersey/Irwell, UK | 281–635 particles 100 g−1 (temporal range) | Hurley et al. [2] |
Ottawa River | 22 particles 100 g−1 (mean) | Vermaire et al. [30] |
Rhine-Main area | 22.8–376 particles 100 g−1 (spatial range) | Klein et al. [31] |
Beijing River | 17.8–54.4 particles 100 g−1 (spatial range) | Wang et al. [45] |
Bloukrans River | 0.6–16 particles 100 g−1 (temporal range) | Nel et al. [32] |
Elbe, Mosel, Neckar, and Rhine | 3.4–6.4 particles 100 g−1 (mean) | Wagner et al. [44] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibbetts, J.; Krause, S.; Lynch, I.; Sambrook Smith, G.H. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water 2018, 10, 1597. https://doi.org/10.3390/w10111597
Tibbetts J, Krause S, Lynch I, Sambrook Smith GH. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water. 2018; 10(11):1597. https://doi.org/10.3390/w10111597
Chicago/Turabian StyleTibbetts, Joseph, Stefan Krause, Iseult Lynch, and Gregory H. Sambrook Smith. 2018. "Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments" Water 10, no. 11: 1597. https://doi.org/10.3390/w10111597
APA StyleTibbetts, J., Krause, S., Lynch, I., & Sambrook Smith, G. H. (2018). Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water, 10(11), 1597. https://doi.org/10.3390/w10111597