Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Indices of River Channel Development
2.4. Ornithological Survey
2.5. Landscape Metrics
- Patch Density (PD): we calculated the index on landscape level as the number of patches per unit area (Equation (1)).
- Interspersion and Juxtaposition Index (IJI): we calculated the index on landscape level as the function of observed interspersion and the maximum possible interspersion for the given number of patch types (Equation (2)).
- Shannon’s Diversity Index (SHDI): We calculated the index on landscape level as the sum of the proportional abundance of each patch type multiplied by that proportions (Equation (3)).
- Class Area of the forests (CA_F): we considered the forests’ area as the indicator of landscape change (in the initial phase, in 1956, there were only a few small patches and later, with the river bed development, the area relevantly increased). The index was calculated as the proportion of the forest land cover type and the total area and was expressed in per cent.
2.6. Statistical Analysis
3. Results
3.1. Changes in Land Cover and Channel Morphology
3.2. Avifauna
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hooke, J.M. Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology 2008, 100, 3–13. [Google Scholar] [CrossRef]
- Michalková, M.; Piégay, H.; Kondolf, G.M.; Greco, S.E. Lateral erosion of the Sacramento River, California (1942–1999), and responses of channel and floodplain lake to human influences. Earth Surf. Process. Landf. 2010, 36, 257–272. [Google Scholar] [CrossRef]
- Rusnák, M.; Lehotský, M. Time-focused investigation of river channel morphological changes due to extreme floods. Z. für Geomorphol. 2014, 58, 251–266. [Google Scholar] [CrossRef]
- Konsoer, K.M.; Rhoads, B.L.; Best, J.L.; Langendoen, E.J.; Abad, J.D.; Parsons, D.R.; Garcia, M.H. Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resour. Res. 2016, 52, 9621–9641. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Andrew, S. Modeling the Evolution of Incised Streams. II: Streambank Erosion. J. Hydraul. Eng. 2008, 134, 905–915. [Google Scholar] [CrossRef]
- Dragićević, S.; Pripužić, M.; Živković, N.; Novković, I.; Kostadinov, S.; Langović, M.; Milojković, B.; Čvorović, Z. Spatial and temporal variability of bank erosion during the period 1930–2016: Case study—Kolubara River Basin (Serbia). Water 2017, 9, 748. [Google Scholar] [CrossRef]
- Nakano, D.; Nakamura, F. The significance of meandering channel morphology on the diversity and abundance of macroinvertebrates in a lowland river in Japan. Aquat. Conserv. Mar. Freshw. Ecosyst. 2007, 18, 780–798. [Google Scholar] [CrossRef]
- Kiss, T.; Balogh, M. Characteristics of Point-Bar Development under the Influence of a Dam: Case Study on the Dráva River at Sigetec, Croatia. J. Environ. Geogr. 2015, 8, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Garcia, X.F.; Schnauder, I.; Pusch, M.T. Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia 2012, 685, 49–68. [Google Scholar] [CrossRef]
- Szabó, Z.; Tóth, C.A.; Tomor, T.; Szabó, S. Airborne LiDAR point cloud in mapping of fluvial forms: A case study of a Hungarian floodplain. GISci. Remote Sens. 2017, 54, 862–880. [Google Scholar] [CrossRef]
- Hickin, E.J. The Development of Meanders in Natural River Channels. Am. J. Sci. 1974, 274, 414–442. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef] [Green Version]
- Hickin, E.J. Hydraulic factors controlling channel migration. In Research in Fluvial Geomorphology, Proceedings of the Fifth Guelph Symposium on Geomorphology; Davidson-Arnott, R., Nickling, W., Eds.; Geo Abstracts Ltd.: Norwich, UK, 1978; pp. 59–66. [Google Scholar]
- Gurnell, A.M.; Grabowski, R.C. Vegetation—Hydrogeomorphology Interactions in a Low-Energy, Human-Impacted River. River Res. Appl. 2015, 32, 202–215. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W.; Corenblit, D. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Sci. Rev. 2012, 111, 129–141. [Google Scholar] [CrossRef]
- Shin, N.; Nakamura, F. Effects of fluvial geomorphology on riparian tree species in Rekifune River, northern Japan. Plant Ecol. 2005, 178, 15–28. [Google Scholar] [CrossRef]
- Sandercock, P.J.; Hooke, J.M.; Mant, J.M. Vegetation in dryland river channels and its interaction with fluvial processes. Prog. Phys. Geogr. Earth Environ. 2007, 31, 107–129. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; de Vries, B.; Braat, L.; van Oorschot, M. Living landscapes: Muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surf. Process. Landf. 2018. [Google Scholar] [CrossRef]
- Zeng, Q.; Shi, L.; Wen, L.; Chen, J.; Duo, H.; Lei, G. Gravel Bars Can Be Critical for Biodiversity Conservation: A Case Study on Scaly-Sided Merganser in South China. PLoS ONE 2015, 10, e0127387. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.M. Distributions of tree species along point bars of 10 rivers in the south-eastern US Coastal Plain. J. Biogeogr. 2005, 33, 121–132. [Google Scholar] [CrossRef]
- Wintenberger, C.L.; Rodrigues, S.; Bréhéret, J.G.; Villar, M. Fluvial islands: First stage of development from nonmigrating (forced) bars and woody-vegetation interactions. Geomorphology 2015, 246, 305–320. [Google Scholar] [CrossRef]
- Cotton, J.A.; Wharton, G.; Bass, J.A.B.; Heppell, C.M.; Wotton, R.S. The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology 2006, 77, 320–334. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Corenblit, D.; García de Jalón, D.; González del Tánago, M.; Grabowski, R.C.; O’Hare, M.T.; Szewczyk, M. A Conceptual Model of Vegetation–hydrogeomorphology Interactions within River Corridors. River Res. Appl. 2015, 32, 142–163. [Google Scholar] [CrossRef]
- Hackney, C.; Best, J.; Leyland, J.; Darby, S.E.; Parsons, D.; Aalto, R.; Nicholas, A. Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the three-dimensional flow structure. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Konsoer, K.; Rhoads, B.; Best, J.; Langendoen, E.; Ursic, M.; Abad, J.; Garcia, M. Length scales and statistical characteristics of outer bank roughness for large elongate meander bends: The influence of bank material properties, floodplain vegetation and flow inundation. Earth Surf. Process. Landf. 2017, 42, 2024–2037. [Google Scholar] [CrossRef]
- Zawiejska, J.; Wyżga, B. Twentieth-century channel change on the Dunajec River, southern Poland: Patterns, causes and controls. Geomorphology 2010, 117, 234–246. [Google Scholar] [CrossRef]
- Hohensinner, S.; Jungwirth, M.; Muhar, S.; Schmutz, S. Spatio-temporal habitat dynamics in a changing Danube River landscape 1812–2006. River Res. Appl. 2011, 27, 939–955. [Google Scholar] [CrossRef]
- Kiss, T.; Blanka, V. River channel response to climate- and human-induced hydrological changes: Case study on the meandering Hernád River, Hungary. Geomorphology 2012, 175–176, 115–125. [Google Scholar] [CrossRef]
- Nakamura, F.; Yamada, H. Effects of pasture development on the ecological functions of riparian forests in Hokkaido in northern Japan. Ecol. Eng. 2005, 24, 539–550. [Google Scholar] [CrossRef]
- Campana, D.; Marchese, E.; Theule, J.I.; Comiti, F. Channel degradation and restoration of an Alpine river and related morphological changes. Geomorphology 2014, 221, 230–241. [Google Scholar] [CrossRef]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Hajdukiewicz, H.; Wyżga, B. Aerial photo-based analysis of the hydromorphological changes of a mountain river over the last six decades: The Czarny Dunajec, Polish Carpathians. Sci. Total Environ. 2019, 648, 1598–1613. [Google Scholar] [CrossRef] [PubMed]
- Negishi, J.N.; Inoue, M.; Nunokawa, M. Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshw. Biol. 2002, 47, 1515–1529. [Google Scholar] [CrossRef]
- Kondolf, G.M. River restoration and meanders. Ecol. Soc. 2006, 11, 42. [Google Scholar] [CrossRef]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef]
- Clark, M.J.; Montemarano, J.J. Short-Term Impacts of Remeandering Restoration Efforts on Fish Community Structure in a Fourth-Order Stream. Water 2017, 9, 546. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Brabec, K.; Buffagni, A.; Erba, S.; Lorenz, A.W.; Ofenböck, T.; Verdonschot, P.F.M.; Hering, D. A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J. Appl. Ecol. 2010, 47, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Ihrig, D. A magyar vízszabályozás története (History of the Hungarian River Regulations); Akadémiai Kiadó: Budapest, Hungary, 1973. [Google Scholar]
- Dunka, S.; Fejér, L.; VágáS, I. A verítékes honfoglalás—A Tisza szabályozás története (The New Concquest—History of The Regulation of Tisza River); Vízügyi Múzeum és Levéltár: Budapest, Hungary, 1996. [Google Scholar]
- Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [Google Scholar] [CrossRef]
- Amissah, G.; Kiss, T.; Fiala, K. Morphological Evolution of the Lower Tisza River (Hungary) in the 20th Century in Response to Human Interventions. Water 2018, 10, 884. [Google Scholar] [CrossRef]
- Bertalan, L.; Rodrigo-Comino, J.; Surian, N.; Šulc Michalková, M.; Szabó, G. Complex assessment of channel changes and bank erosion hazard on the Sajó (Slaná) River, Hungary. In Geomorfologický sborník 16, Proceedings of the Conference: State of Geomorphological Research in 2018, Vílanec, Czech Republic, 25–27 April 2018; Máčka, Z., Ježková, J., Nováková, E., Kuda, F., Eds.; Masaryk University: Brno, Czech Republic, 2018; pp. 13–14. [Google Scholar]
- Bogárdi, J. A Sajó hordalékszállítása és a hordalékos víz ülepítése. (Sediment transport and deposition of Sajó River). Hidrológiai Közlöny/Hung. J. Hydrol. 1949, 29, 376–379. [Google Scholar]
- Kákóczki, B. A Szederkényi Uradalom Történeti Földrajza, 1st ed.; Tiszaújváros város Önkormányzata a Derkovits Gyula Művelődési Központ közreműködésével: Tiszaújváros, Hungary, 2016. [Google Scholar]
- Bertalan, L.; Szabó, G. Lateral erosion monitoring along a southern section of Sajó (Slaná) River. In Detailed Aerial Mapping and Flood Impact Monitoring in the V4 Region; Křížová, A., Ed.; Univerzita Komenskeho, Bratislava: Bratislava, Slovakia, 2015; p. 4. [Google Scholar]
- Bertalan, L.; Szabó, G.; Szabó, S. Soil degradation induced by lateral erosion of a non-regulated alluvial river (Sajó River, Hungary). In Aktuální Environmentálni Hrozby a Jejich Impakt v Krajiné (Current Environmental Threats and Their Impact in the Landscape Brno): Sbornik Abstraktu Z Mezinárodniho Workshopu; Zapletalová, J., Kirchner, K., Eds.; Ústav geoniky AV ČR: Poruba, Czech Republic, 2016; pp. 8–9. [Google Scholar]
- Jongman, R.H.G.; Bouwma, I.M.; Griffioen, A.; Jones-Walters, L.; Van Doorn, A.M. The Pan European Ecological Network: PEEN. Landsc. Ecol. 2011, 26, 311–326. [Google Scholar] [CrossRef]
- Larned, S.T.; Datry, T.; Arscott, D.B.; Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 2010, 55, 717–738. [Google Scholar] [CrossRef] [Green Version]
- Rusnák, M.; Sládek, J.; Kidová, A.; Lehotský, M. Template for high-resolution river landscape mapping using UAV technology. Measurement 2018, 115, 139–151. [Google Scholar] [CrossRef]
- Szabó, G.; Bertalan, L.; Barkóczi, N.; Kovács, Z.; Burai, P.; Lénárt, C. Zooming on Aerial Survey. In Small Flying Drones: Applications for Geographic Observation; Casagrande, G., Sik, A., Szabó, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 91–126. ISBN 978-3-319-66577-1. [Google Scholar]
- Restás, Á. Drone Applications for Supporting Disaster Management. World J. Eng. Technol. 2015, 3, 316–321. [Google Scholar] [CrossRef]
- Restás, Á. Water Related Disaster Management Supported by Drone Applications. World J. Eng. Technol. 2018, 6, 116–126. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Hoboken, NJ, USA, 2005; ISBN 1405115165. [Google Scholar]
- Micheli, E.R.; Kirchner, J.W.; Larsen, E.W. Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, central Sacramento River, California, USA. River Res. Appl. 2004, 20, 537–548. [Google Scholar] [CrossRef]
- Corenblit, D.; Tabacchi, E.; Steiger, J.; Gurnell, A.M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Sci. Rev. 2007, 84, 56–86. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Gen. Tech. Rep. PNW-GTR-351. USDA 1995, 122, 351. [Google Scholar]
- Lopez, R.R.D.; Frohn, R.C. Remote Sensing for Landscape Ecology: New Metric Indicators: Monitoring, Modeling, and Assessment of Ecosystems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.C. Statistics and Data Analysis in Geology; Wiley: Hoboken, NJ, USA, 1986; ISBN 978-0471172758. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Joreskog, K.; Sorbom, D. LISREL 8 User’s Reference Guide; Scientific Software International: Chicago, IL, USA, 1993. [Google Scholar]
- Basto, M.; Pereira, J.M. An SPSS R-Menu for Ordinal Factor Analysis. J. Stat. Softw. 2012, 46, 1–29. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. R Found. Statistical Computing Vienna Austria. 2018. Available online: http://www.R-project.org/ (accessed on 10 September 2018).
- Revelle, W. psych: Procedures for Personality and Psychological Research. R Package 2016. [Google Scholar] [CrossRef]
- Bernaards, C.A.; Jennrich, R.I. Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educ. Psychol. Meas. 2005, 65, 676–696. [Google Scholar] [CrossRef]
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008; ISBN 9780387759692r0387759697. [Google Scholar]
- Seshan, V.E. clinfun: Clinical Trial Design and Data Analysis Functions. R Package. 2018. Version 1.0.15. Available online: https://CRAN.R-project.org/package=clinfun (accessed on 10 September 2018).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Gyurácz, J.; Nagy, K.; Fuisz, T.I.; Karcza, Z.; Szép, T. European bee-eater (Merops apiaster Linnaeus, 1758) in Hungary: A review. Ornis Hung. 2013, 21, 1–22. [Google Scholar] [CrossRef]
- Cserkész-Nagy, Á.; Tóth, T.; Vajk, Ö.; Sztanó, O. Erosional scours and meander development in response to river engineering: Middle Tisza region, Hungary. Proc. Geol. Assoc. 2010, 121, 238–247. [Google Scholar] [CrossRef]
- Ondruch, J.; Máčka, Z. Response of lateral channel dynamics of a lowland meandering river to engineering-derived adjustments—An example of the Morava River (Czech Republic). Open Geosci. 2015, 7, 588–605. [Google Scholar] [CrossRef]
- Lotsari, E.; Vaaja, M.; Flener, C.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Annual bank and point bar morphodynamics of a meandering river determined by high-accuracy multitemporal laser scanning and flow data. Water Resour. Res. 2014, 50, 5532–5559. [Google Scholar] [CrossRef] [Green Version]
- Rusnák, M.; Lehotský, M.; Kidová, A. Channel migration inferred from aerial photographs, its timing and environmental consequences as responses to floods: A case study of the meandering Topl’a River, Slovak Carpathians. Morav. Geogr. Rep. 2016, 24, 32–43. [Google Scholar] [CrossRef]
- Tosic, R.; Lovric, N.; Dragicevic, S. Land use changes caused by bank erosion along the lower part of the Bosna river from 2001 to 2013. Glas. Srp. Geogr. Drus. (Bull. Serbian Geogr. Soc). 2014, 94, 49–58. [Google Scholar] [CrossRef]
- Das, T.K.; Haldar, S.K.; Sarkar, D.; Borderon, M.; Kienberger, S.; Das Gupta, I.; Kundu, S.; Guha-Sapir, D. Impact of riverbank erosion: A case study. Australas. J. Disaster Trauma Stud. 2017, 21, 73–81. [Google Scholar]
- Szalai, Z.; Balogh, J.; Jakab, G. Riverbank erosion in Hungary—with an outlook on environmental consequences. Hung. Geogr. Bull. 2013, 62, 233–245. [Google Scholar]
- Rahman, M.M.; Islam, M.N. Biodiversity Loss by Riverbank Erosion: A Study on the two Char Unions in Bangladesh. J. Biodivers. Endanger. Species 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Szabó, S.; Bertalan, L.; Kerekes, Á.; Novák, T.J. Possibilities of land use change analysis in a mountainous rural area: A methodological approach. Int. J. Geogr. Inf. Sci. 2015, 30, 708–726. [Google Scholar] [CrossRef]
- Hunter, M.L.; Hunter, M.L., Jr. Maintaining Biodiversity in Forest Ecosystems; Cambrige University Press: Cambrige, UK, 1999. [Google Scholar]
- Vizslán, T.; Szentgyörgyi, P. A Sajó-Hernád sík és a Sajó-völgy gerinces faunájáról (Vertebral Fauna of the Sajó-Hernád Plain and the Sajó Valley). Fol. Hist.-Nat. Mus. Matr. 1992, 17, 199–208. [Google Scholar]
- Szép, T.; Nagy, K.; Nagy, Z.; Halmos, G. Population trends of common breeding and wintering birds in hungary, decline of long-distance migrant and farmland birds during 1999–2012. Ornis Hung. 2012, 20, 13–63. [Google Scholar] [CrossRef]
- Girvetz, E.H. Removing erosion control projects increases bank swallow (Riparia riparia) population viability modeled along the Sacramento River, California, USA. Biol. Conserv. 2010, 143, 828–838. [Google Scholar] [CrossRef]
- Szép, T. Partifecske (Riparia riparia). In Birds of Hungary; Haraszthy, L., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2000. [Google Scholar]
- Szép, T.; Møller, A.P. Cost of parasitism and host immune defence in the sand martin Riparia riparia: A role for parent-offspring conflict? Oecologia 1999, 119, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- López-Vicente, M.; Quijano, L.; Palazón, L.; Gaspar, L.; Navas, A. Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central spanish pre-pyrenees). Cuad. Investig. Geográfica 2015, 41, 127. [Google Scholar] [CrossRef] [Green Version]
- Kavian, A.; Mohammadi, M.; Gholami, L.; Rodrigo-Comino, J. Assessment of the Spatiotemporal Effects of Land Use Changes on Runoff and Nitrate Loads in the Talar River. Water 2018, 10, 445. [Google Scholar] [CrossRef]
- Lehotský, M.; Rusnák, M.; Kidová, A.; Dudžák, J. Multitemporal assessment of coarse sediment connectivity along a braided-wandering river. L. Degrad. Dev. 2017, 29, 1249–1261. [Google Scholar] [CrossRef]
- Cossart, É.; Fressard, M. Assessment of structural sediment connectivity within catchments: Insights from graph theory. Earth Surf. Dyn. 2017, 5, 253–268. [Google Scholar] [CrossRef]
- Hou, W.; Neubert, M.; Walz, U. A simplified econet model for mapping and evaluating structural connectivity with particular attention of ecotones, small habitats, and barriers. Landsc. Urban Plan. 2017, 160, 28–37. [Google Scholar] [CrossRef]
- Basatnia, N.; Hossein, S.A.; Rodrigo-Comino, J.; Khaledian, Y.; Brevik, E.C.; Aitkenhead-Peterson, J.; Natesan, U. Assessment of temporal and spatial water quality in international Gomishan Lagoon, Iran, using multivariate analysis. Environ. Monit. Assess. 2018, 190, 314. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, Y.; Xun, B.; Shao, H. Measuring Landscape Connectivity in a Urban Area for Biological Conservation. CLEAN—Soil Air Water 2013, 43, 605–613. [Google Scholar] [CrossRef]
Year | Number of Images | Type | Scale | Resolution (m) | RMSE (m) |
---|---|---|---|---|---|
1952 | 22 | B/W Aerial photo | 1:7000 | 0.5 | 2.7 |
1956 | 18 | B/W Aerial photo | 1.7000 | 0.5 | 3.9 |
1975 | 15 | B/W Aerial photo | 1:12,000 | 0.5 | 2.2 |
1988 | 17 | B/W Aerial photo | 1:12,000 | 0.5 | 2.8 |
2000 | 22 | Ortophoto | 1:10,000 | 0.5 | - |
2005 | 22 | Ortophoto | 1:10,000 | 0.5 | - |
2011 | 22 | Ortophoto | 1:10,000 | 0.4 | - |
2015 | 1 | UAV-Orthophoto | 1:7498 | 0.09 | 0.05 |
2016 | 1 | UAV-Orthophoto | 1:8272 | 0.07 | 0.05 |
2017 | 1 | UAV-Orthophoto | 1:7669 | 0.07 | 0.05 |
Conversion Type | 1952–1956 | 1956–1975 | 1975–1988 | 1988–2000 | 2000–2005 | 2005–2011 | 2011–2015 | 2015–2016 | 2016–2017 | |
---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | |||||||||
RC | BS | 0.016 | 0.019 | 0.028 | 0.007 | 0.013 | 0.014 | 0.018 | 0.005 | 0.004 |
BS | G | 0.008 | 0.016 | 0.005 | 0.008 | 0.002 | 0 | 0 | 0 | 0 |
BS | F | 0.002 | 0.005 | 0.021 | 0.026 | 0.012 | 0.013 | 0.006 | 0.005 | 0.009 |
G | F | 0.010 | 0.030 | 0.049 | 0.008 | 0.023 | 0.088 | 0.030 | 0.014 | 0.007 |
G | RC | 0.008 | 0.025 | 0.042 | 0 | 0.001 | 0.005 | 0.001 | 0 | 0 |
G | AL | 0.001 | 0.008 | 0.326 | 0.002 | 0.006 | 0.010 | 0.007 | 0.001 | 0.001 |
F | RC | 0.001 | 0.002 | 0.004 | 0.007 | 0.003 | 0.004 | 0.004 | 0.006 | 0.002 |
AL | RC | 0.011 | 0.011 | 0 | 0.017 | 0.006 | 0.018 | 0.015 | 0.004 | 0.004 |
Common Name | Scientific Name | |
---|---|---|
1 | Grey heron | Ardea cinerea |
2 | Common buzzard | Buteo buteo |
3 | Common kestrel | Falco tinnunculus |
4 | Eurasian hobby | Falco subbuteo |
5 | Common pheasant | Phasianus colchicus |
6 | Common sandpiper | Tringa hypoleucos |
7 | Woodpigeon | Columba palumbus |
8 | Turtle dove | Streptopelia turtur |
9 | Common cuckoo | Cuculus canorus |
10 | Common kingfisher | Alcedo atthis |
11 | European bee-eater | Merops apiaster |
12 | Green woodpecker | Picus viridis |
13 | Great spotted woodpecker | Dendrocopus major |
14 | Sand martin | Riparia riparia |
15 | Common blackbird | Turdus merula |
16 | River warbler | Locustella fluviatilis |
17 | Eurasian blackcap | Sylvia atricapilla |
18 | Chiffchaff | Phylloscopus collybita |
19 | Great tit | Parus major |
20 | Common starling | Sturnus vulgaris |
21 | Golden oriole | Oriolus oriolus |
22 | Eurasian jay | Garrulus glandarius |
23 | Hooded Crow | Corvus cornix |
24 | Common chaffinch | Fringilla coelebs |
25 | European greenfinch | Carduelis chloris |
26 | European goldfinch | Carduelis carduelis |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertalan, L.; Novák, T.J.; Németh, Z.; Rodrigo-Comino, J.; Kertész, Á.; Szabó, S. Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary. Water 2018, 10, 1613. https://doi.org/10.3390/w10111613
Bertalan L, Novák TJ, Németh Z, Rodrigo-Comino J, Kertész Á, Szabó S. Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary. Water. 2018; 10(11):1613. https://doi.org/10.3390/w10111613
Chicago/Turabian StyleBertalan, László, Tibor József Novák, Zoltán Németh, Jesús Rodrigo-Comino, Ádám Kertész, and Szilárd Szabó. 2018. "Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary" Water 10, no. 11: 1613. https://doi.org/10.3390/w10111613
APA StyleBertalan, L., Novák, T. J., Németh, Z., Rodrigo-Comino, J., Kertész, Á., & Szabó, S. (2018). Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary. Water, 10(11), 1613. https://doi.org/10.3390/w10111613