Hydrological Guidelines for Reservoir Operation to Enhance Water Governance: Application to the Brazilian Semiarid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Synthesis of the Proposed Method and Data Sources
2.3. Phase I: Withdrawal Discharge as a Function of Annual Reliability
2.4. Phase II: Reference Discharge Versus Alert Volume Family of Curves
2.5. Phase III: Calibration of The Parameter T
2.6. Phase IV: Association of Each Water Use with Its Respective Alert Volume
3. Results
3.1. Discharges as a Function of the Annual Reliability Level
3.2. Released Discharges as a Function of the Reservoir Volumes
3.3. Simulations for the Focus Reservoirs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaiser, T.; Krol, M.; Frischkorn, H.; de Araújo, J.C. Global Change and Regional Impacts; Springer: Berlin, Germany, 2003; ISBN 978-3-540-43824-3. [Google Scholar]
- Mamede, G.L.; Araújo, N.; Schneider, C.M.; de Araújo, J.C.; Herrmann, H.J. Overspill avalanching in a dense reservoir network. Proc. Natl. Acad. Sci. USA 2012, 109, 7191–7195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, S.; de Araújo, J.C.; Araújo, N.; Herrmann, H. Flood avalanches in a semiarid basin with a dense reservoir network. J. Hydrol. 2014, 512, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Paranage, K. Understanding the relationship between water infrastructure and socio-political configurations: A case study from Sri Lanka. Water 2018, 10, 1402. [Google Scholar] [CrossRef]
- Song, W.; Yuan, Y.; Jiang, Y.; Lei, X.; Shu, D. Rule-based water resource allocation in the Central Guizhou Province, China. Ecol. Eng. 2016, 87, 194–202. [Google Scholar] [CrossRef]
- Chen, K.; Guo, S.; He, S.; Xu, T.; Zhong, Y.; Sun, S. The value of hydrologic information in reservoir outflow decision-making. Water 2018, 10, 1372. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, X.; Wang, H.; Wang, C.; Lei, X.; Xiong, Y.; Zhang, W. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. J. Hydrol. 2017, 551, 253–264. [Google Scholar] [CrossRef]
- Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. Sci. Total Environ. 2017, 607–608, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, M.; Guariso, G. NN-Based implicit stochastic optimization of multi-reservoir systems management. Water 2018, 10, 303. [Google Scholar] [CrossRef]
- Bhatia, N.; Srivastav, R.; Srinivasan, K. Season-dependent hedging policies for reservoir operation-a comparison study. Water 2018, 10, 1311. [Google Scholar] [CrossRef]
- Tian, Y.; Xiong, J.; He, X.; Pi, X.; Jiang, S.; Han, F.; Zheng, Y. Joint operation of surface water and groundwater reservoirs to address water conflicts in arid regions: An integrated modeling study. Water 2018, 10, 1105. [Google Scholar] [CrossRef]
- Recio-Villa, I.; Martínez Rodríguez, J.B.; Molina, J.L.; Pino Tarragó, J.C. Multiobjective optimization modeling approach for multipurpose single reservoir operation. Water 2018, 10, 427. [Google Scholar] [CrossRef]
- BRAZIL. Law Nº 9 433, from 8 January 1997. Brasília. Available online: http://www.planalto.gov.br/ccivil_03/LEIS/L9433.htm (accessed on 1 September 2018).
- De Araújo, J.C.; Bronstert, A. A method to assess hydrological drought in semiarid environments and its application to the Jaguaribe River basin, Brazil. Water Int. 2016, 41, 213–230. [Google Scholar] [CrossRef]
- Telles Melo, J.A.; Montezuma, T.F.; Marques, G.O.P. Direito à Água e Injustiça Hídrica: Um Estudo Sobre a (In)Constitucionalidade dos Benefícios Tarifários às Indústrias Hidrointensivas no Complexo Industrial do Pecém. 2017. Available online: http://www.planetaverde.org/arquivos/biblioteca/arquivo_20170605175106_890.pdf (accessed on 1 September 2018).
- Liu, P.; Li, L.; Chen, G.; Rheinheimer, D.E. Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization. J. Hydrol. 2014, 514, 102–113. [Google Scholar] [CrossRef]
- Feng, M.; Liu, P.; Guo, S.; Gui, Z.; Zhang, X.; Zhang, W.; Xiong, L. Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios. Adv. Water Resour. 2017, 104, 23–36. [Google Scholar] [CrossRef]
- Andreu, J.; Capilla, J.; Sanchis, E. A generalized decision-support system for water-resources planning and operational management. J. Hydrol. 1996, 177, 269–291. [Google Scholar] [CrossRef]
- Porto, R.L.L.; Azevedo, L.G.T. Sistemas de Suporte a Decisões de Recursos Hídricos. In Técnicas Quantitativas Para o Gerenciamento de Recursos Hídrico; ABRH: Porto Alegre, Brazil, 1997. (In Portuguese) [Google Scholar]
- Zagona, E.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. RiverWare: A generalized tool for complex reservoir system modeling. J. Am. Water Resour. Assoc. 2001, 37, 913–929. [Google Scholar] [CrossRef]
- Labadie, J. MODSIM: River Basin Management Decision Support System. In Watershed Models; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D. An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric. Water Manag. 2018, 196, 24–36. [Google Scholar] [CrossRef]
- Alexandre, D.M.B. Gestão de Pequenos Sistemas Hídricos No Semiárido Nordestino. Ph.D. Thesis, Federal University of Ceará, Fortaleza, Brazil, July 2012. [Google Scholar]
- Basco-Carrera, L.; Warren, A.; van Beek, E.; Jonoski, A.; Giardino, A. Collaborative modelling or participatory modelling? A framework for water resources management. Environ. Model. Softw. 2017, 95–110. [Google Scholar] [CrossRef]
- Halbe, J.; Pahl-Wostl, C.; Adamowski, J. A methodological framework to support the initiation, design and institutionalization of participatory modeling processes in water resources management. J. Hydrol. 2018, 556, 701–716. [Google Scholar] [CrossRef]
- Zhang, S.; Foerster, S.; Medeiros, P.; de Araújo, J.C.; Motagh, M.; Waske, B. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data. Sci. Total Environ. 2016, 571, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.F.; Heim, B.; Foerster, S.; Brosinsky, A.; de Araújo, J.C. In situ and satellite observation of CDOM and chlorophyll-a dynamics in small water surface reservoirs in the Brazilian Semiarid Region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Campos, J.N.B. Paradigms and public policies on drought in Northeast Brazil: A historical perspective. Environ. Manag. 2015, 55, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- CEARÁ. Electronic Atlas of Water Resources of Ceará. 2018. Available online: http://atlas.srh.ce.gov.br/ (accessed on 23 January 2018).
- COGERH—Companhia de Gestão dos Recursos Hídricos. Available online: https://www.cogerh.com.br/ (accessed on 3 January 2018).
- De Araújo, J.C.; Güntner, A.; Bronstert, A. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrol. Sci. J. Sci. Hydrol. 2006, 51, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.N.B. Modeling the yield evaporation spill in the reservoir storage process: The regulation triangle diagram. Water Resour. Manag. 2010, 24, 3487–3511. [Google Scholar] [CrossRef]
- De Araújo, J.C.; Piedra, J.I.G. Comparative hydrology: Analysis of a semiarid and a humid tropical watershed. Hydrol. Process. 2009, 23, 1169–1178. [Google Scholar] [CrossRef]
- De Figueiredo, J.V.; de Araújo, J.C.; Medeiros, P.H.A.; Costa, A.C. Runoff initiation in a preserved semiarid Caatinga small watershed, Northeastern Brazil. Hydrol. Process. 2016, 30, 2390–2400. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E.; Vanclay, F. The social experience of drought in rural Iran. Land Use Policy 2013, 30, 120–129. [Google Scholar] [CrossRef]
- Xi, J. Types of integration and depressive symptoms: A latent class analysis on the resettled population for the Three Gorges dam project, China. Soc. Sci. Med. 2016, 157, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Keilty, K.; Beckley, T.M.; Sherren, K. Baselines of acceptability and generational change on the Mactaquac hydroelectric dam headpond (New Brunswick, Canada). Geoforum 2016, 75, 234–248. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M. From engineering hydrology to Earth system science: Milestones in the transformation of hydrologic science. Hydrol. Earth Syst. Sci. 2018, 22, 1665–1693. [Google Scholar] [CrossRef]
- Singer, J.; Pham, H.T.; Hoang, H. Broadening stakeholder participation to improve outcomes for dam-forced resettlement in Vietnam. Water Resour. Rural Dev. 2014, 4, 85–103. [Google Scholar] [CrossRef]
Variables | Orós | Araras | Pentecoste | Aracoiaba | Average |
---|---|---|---|---|---|
Storage capacity (hm3) | 1940 | 891 | 360 | 162 | 838 |
Catchment area (km²) | 24,600 | 3520 | 2840 | 533 | 7873 |
Annual rainfall (mm) | 529 | 759 | 702 | 828 | 575 (c) |
Average inflow (hm3·year−1) | 1505 | 608 | 183 | 68 | 1261 (c) |
Storage capacity/average inflow (year) | 1.29 | 1.47 | 1.97 | 2.38 | 1.39 (c) |
Coefficient of variation of inflow (n.d.) | 0.9 | 1.2 | 1.0 | 0.6 | 0.9 (c) |
Q90/average inflow (n.d.) (a) | 0.43 | 0.38 | 0.35 | 0.76 | 0.42 (c) |
Field data sample size | 250 | 147 | 135 | 26 | 140 |
Field data sampling period (years) | 22 | 20 | 19 | 14 | 19 |
First sampling year | 1996 | 1996 | 1996 | 2003 | |
Last sampling year | 2017 | 2015 | 2014 | 2016 | |
Calibrated depletion duration T (months) (b) | 5.7 | 6.0 | 5.8 | 6.0 | 5.9 |
Number of outliers for T = 6 months | 1 | 0 | 1 | 0 | 0.5 |
Water Use | Water-Use Priority | Water-Use Reliability | Orós | Araras | Pentecoste | Aracoiaba | ||||
---|---|---|---|---|---|---|---|---|---|---|
QW | Va/SC | QW | Va/SC | QW | Va/SC | QW | Va/SC | |||
Temporary-culture irrigation | Very low | 80% | 24.35 | 0.23 | 9.12 | 0.19 | 2.71 | 0.17 | 1.89 | 0.23 |
Aquaculture and similar | Low | 85% | 22.74 | 0.21 | 8.36 | 0.17 | 2.46 | 0.15 | 1.81 | 0.22 |
Permanent-culture irrigation | Moderate | 90% | 20.55 | 0.19 | 7.35 | 0.15 | 2.06 | 0.13 | 1.65 | 0.20 |
Industries and energy provision | High | 95% | 17.09 | 0.16 | 6.16 | 0.13 | 1.72 | 0.11 | 1.54 | 0.19 |
Human and animal supply | Very high | 99% | 9.57 | 0.10 | 4.61 | 0.10 | 1.15 | 0.08 | 1.32 | 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Araújo, J.C.; Mamede, G.L.; De Lima, B.P. Hydrological Guidelines for Reservoir Operation to Enhance Water Governance: Application to the Brazilian Semiarid Region. Water 2018, 10, 1628. https://doi.org/10.3390/w10111628
De Araújo JC, Mamede GL, De Lima BP. Hydrological Guidelines for Reservoir Operation to Enhance Water Governance: Application to the Brazilian Semiarid Region. Water. 2018; 10(11):1628. https://doi.org/10.3390/w10111628
Chicago/Turabian StyleDe Araújo, José Carlos, George Leite Mamede, and Berthyer Peixoto De Lima. 2018. "Hydrological Guidelines for Reservoir Operation to Enhance Water Governance: Application to the Brazilian Semiarid Region" Water 10, no. 11: 1628. https://doi.org/10.3390/w10111628
APA StyleDe Araújo, J. C., Mamede, G. L., & De Lima, B. P. (2018). Hydrological Guidelines for Reservoir Operation to Enhance Water Governance: Application to the Brazilian Semiarid Region. Water, 10(11), 1628. https://doi.org/10.3390/w10111628