Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.4. Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Heavy Metal Concentrations
3.3. Spatial Distribution of Heavy Metals
4. Discussion
4.1. Source Identification
4.2. Impacts of Environmental Variables
4.3. Risk Assessment
4.4. Partition of Heavy Metals
5. Conclusions
- Heavy metal concentrations increase slightly along the mainstream due to pollutant emission and sediment sorting, and the sites from S6 to S12-WS are identified as hot spots for heavy metal distribution. Meanwhile, the heavy metal concentrations in the mainstream are relatively greater than those in the tributaries.
- There is a similar source for the heavy metals Ni, Cu, and Pb, which is different from that of Cd. Meanwhile, the heavy metal concentrations are generally positively correlated to the water depth, H, while negatively correlated with DO, turbidity, and D50; and the environmental variables exert a greater impact on the heavy metal partition between the sediment and overlying water.
- According to the risk assessment, the heavy metals in the surface sediments of TGR show a low to moderate pollution. The average Ei value of each heavy metal follows: Cd > Pb > Cu > Ni > Cr > Zn, where Cd exhibits a considerable ecological risk, and other heavy metals exhibit low ecological risks.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Benson, N.U.; Udosen, E.D.; Essien, J.P.; Anake, W.U.; Adedapo, A.E.; Akintokun, O.A.; Fred-Ahmadu, O.H.; Olajire, A.A. Geochemical fractionation and ecological risks assessment of benthic sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Int. J. Sediment Res. 2017, 32, 410–420. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.P.; Luo, Y.P.; Liu, C.S.; Kyzas, G.Z.; Luo, Y.; Zhao, D.Y.; An, S.Q.; Zhu, H.L. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.G.; Griscom, S.B.; Lee, J.S.; Choi, H.J.; Koh, C.H.; Luoma, S.N.; Fisher, N.S. Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediment. Science 2000, 287, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.W.; Chen, M.H.; Chen, Z.H.; Zhao, H.M.; He, G.J. Simulation of sediment particle surface morphology and element distribution by the concept of mathematical sand. J. Hydro-Environ. Res. 2014, 8, 186–193. [Google Scholar] [CrossRef]
- Huang, L.; Fang, H.W.; He, G.J.; Chen, M.H. Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization. Environ. Sci. Pollut. Res. 2016, 23, 18883–18891. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, Z.Y.; Niu, J.F.; Liu, R.M. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J. Hazard. Mater. 2009, 162, 92–98. [Google Scholar] [CrossRef]
- Fang, H.W.; Huang, L.; Wang, J.Y.; He, G.J.; Reible, D. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. J. Hazard. Mater. 2016, 302, 447–457. [Google Scholar] [CrossRef]
- Huang, S.L.; Wan, Z.H.; Smith, P. Numerical modeling of heavy metal pollutant transport-transformation in fluvial rivers. J. Hydraul. Res. 2007, 45, 451–461. [Google Scholar] [CrossRef]
- Liang, A.; Wang, Y.C.; Guo, H.T.; Bo, L.; Zhang, S.; Bai, Y.L. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2015, 22, 16067–16076. [Google Scholar] [CrossRef]
- Wang, T.J.; Pan, J.; Liu, X.L. Characterization of heavy metal contamination in the soil and sediment of the Three Gorges Reservoir, China. J. Environ. Sci. Health A 2017, 52, 201–209. [Google Scholar] [CrossRef]
- Feng, C.H.; Zhao, S.; Wang, D.X.; Niu, J.F.; Shen, Z.Y. Sedimentary records of metal speciation in the Yangtze Estuary: Role of hydrological events. Chemosphere 2014, 107, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Gao, B.; Xu, D.Y.; Peng, W.Q.; Lu, J. Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 648, 197–205. [Google Scholar] [CrossRef] [PubMed]
- MEP (Ministry of Environmental Protection of PRC). The Environmental and Ecological Monitoring Bulletins of the Three Gorges Reservoir Area; 2016; Available online: http://www.cnemc.cn/jcbg/zjsxgcstyhjjcbg/ (accessed on 5 December 2018).
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Carman, R. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.Q.; Jiang, D.G.; Dai, H.C. Spatial-temporal hydrodynamic and algal bloom modelling analysis of a reservoir tributary embayment. J. Hydro-Environ. Res. 2015, 9, 200–215. [Google Scholar] [CrossRef]
- Li, Q.F.; Yu, M.X.; Lu, G.B.; Cai, T.; Bai, X.; Xia, Z.Q. Impacts of the Gezhouba and Three Gorges reservoirs on the sediment regime in the Yangtze River, China. J. Hydrol. 2011, 403, 224–233. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vorosmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.X.; Ji, J.F.; Mao, C.P.; Yang, Z.F.; Yuan, X.Y.; Ayoko, G.A.; Frost, R.L. Heavy metal contamination in suspended solids of Changjiang River—Environmental implications. Geoderma 2010, 159, 286–295. [Google Scholar] [CrossRef]
- Huang, L.; Fang, H.W.; Reible, D. Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir. Water Res. 2015, 85, 393–403. [Google Scholar] [CrossRef]
- Huang, L.; Fang, H.W.; Xu, X.Y.; He, G.J.; Zhang, X.S.; Reible, D. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient. Sci. Total Environ. 2017, 592, 649–661. [Google Scholar] [CrossRef]
- Stone, R. Three Gorges Dam: Into the unknown. Science 2008, 321, 628–632. [Google Scholar] [CrossRef]
- Bing, H.J.; Zhou, J.; Wu, Y.H.; Wang, X.X.; Sun, H.Y.; Li, R. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhou, H.D.; Huang, Y.; Wang, Y.C.; Gao, J.J.; Liu, X.B. Characteristics of heavy metals and Pb isotopic composition in sediments collected from the tributaries in Three Gorges Reservoir, China. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhou, H.D.; Yang, Y.; Wang, Y.C. Occurrence, distribution, and risk assessment of the metals in sediments and fish from the largest reservoir in China. RSC Adv. 2015, 5, 60322–60329. [Google Scholar] [CrossRef]
- Gao, J.M.; Sun, X.Q.; Jiang, W.C.; Wei, Y.M.; Guo, J.S.; Liu, Y.Y.; Zhang, K. Heavy metals in sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China. Environ. Sci. Pollut. Res. 2016, 23, 10415–10425. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Tian, Z.B.; Li, H.; Cai, J.; Wang, S.J. Spatial and temporal variations of heavy metal pollution in sediments of Daning River under the scheduling of Three Gorges Reservoir. In Proceedings of the International Forum on Energy, Environment and Sustainable Development (IFEESD), Shenzhen, China, 16–17 April 2016. [Google Scholar]
- Wei, X.; Han, L.; Gao, B.; Zhou, H.; Lu, J.; Wan, X. Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: The impact of water impoundment. Ecol. Indic. 2016, 61, 667–675. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, B.; Xu, D.; Gao, L.; Yin, S. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.H.; Li, T.J.; Wang, G.Q.; Yeh, W.W.-G. A parallel dynamic programming algorithm for multi-reservoir system optimization. Adv. Water Resour. 2014, 67, 1–15. [Google Scholar] [CrossRef]
- CWRC (Changjiang Water Resource Committee). Bulletin of the Yangtze River Sediment; Changjiang Press: Wuhan, China, 2015. [Google Scholar]
- Liu, Y.; Liu, H.C.; Li, X.H. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 1996, 25, 552–558. [Google Scholar]
- Page, A.L. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Agronomy); American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Fu, J.; Sheng, S.; Wen, T.; Zhang, Z.M.; Wang, Q.; Hu, Q.X.; Li, Q.S.; An, S.Q.; Zhu, H.L. Polycyclic aromatic hydrocarbons in surface sediments of the Jialu River. Ecotoxicology 2011, 20, 940–950. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, American Public Health Association; American Water Works Association and Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control—A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Shepard, F.P. Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol. 1954, 24, 151–158. [Google Scholar]
- Fang, T.; Xu, X.Q. Establishment of sediment quality criteria for metals in water of the Yangtze River using equilibrium partitioning approach. Resour. Environ. Yangtze Basin 2007, 16, 525–531. [Google Scholar]
- Tang, J. Study on the Regularity of Move, Enrichment, and Translation of Cadmium and Other Heavy Metals in the District of the Three Gorges Reservoir. Doctoral Dissertation, Chengdu University of Technology, Chengdu, China, 2005. [Google Scholar]
- Xu, X.Q.; Deng, G.Q.; Hui, J.Y.; Zhang, X.H.; Qiu, C.Q. The pollution characteristics of heavy metal in sediments in Three Gorges Reservoir. Acta Hydrobiol. Sin. 1999, 23, 1–9. [Google Scholar]
- CEPA (Chinese Environmental Protection Administration). Chinese Environmental Quality Standard for Soils (GB 15618-1995); 1995. Available online: http://kjs.mee.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/t19960301_82028.shtml (accessed on 5 December 2018).
- Wang, X.X.; Bing, H.J.; Wu, Y.H.; Zhou, J.; Sun, H.Y. Distribution and potential eco-risk of chromium and nickel in sediments after impoundment of Three Gorges Reservoir, China. Hum. Ecol. Risk Assess. 2017, 23, 172–185. [Google Scholar] [CrossRef]
- Wang, J.K.; Gao, B.; Zhou, H.D.; Lu, J.; Wang, Y.C.; Yin, S.H.; Hao, H.; Yuan, H. Heavy metal pollution and its potential ecological risk of the sediment in Three Gorges Reservoir during its impounding period. Environ. Sci. 2012, 33, 1693–1699. [Google Scholar]
- Zhang, X.M.; Liu, Y.Y.; Guo, J.P.; Li, Y. Investigation and characterization of heavy metal pollution in sediment of Chongqing urban section of the Three Gorges Reservoir. J. Chongqing Technol. Bus. Univ. 2010, 27, 176–180. (In Chinese) [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Li, J.; Wu, J.; Wang, J.S. Source apportionment of trace metals in river sediments: A comparison of three methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef]
- Feng, L.; Li, C.M.; Hu, B.Q.; Zhang, Y.; Huang, J.S.; Zhang, J. Analysis of pollution characteristics of surface sediments in Three Gorges Reservoir after normal impoundment. Res. Environ. Sci. 2016, 29, 353–359. (In Chinese) [Google Scholar]
- Liu, M.X.; Yang, Y.Y.; Yun, X.Y.; Zhang, M.M.; Li, Q.X.; Wang, J. Distribution and ecological assessment of heavy metals in surface sediments of the East Lake, China. Ecotoxicology 2014, 23, 92–101. [Google Scholar] [CrossRef]
- Ren, D.Y.; Zhao, F.H.; Wang, Y.Q.; Yang, S.J. Distributions of minor and trace elements in Chinese coals. Int. J. Coal Geol. 1999, 40, 109–118. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xiao, T.F.; Ning, Z.P.; Li, H.J.; Tang, J.; Zhou, G.Z. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Appl. Geochem. 2013, 37, 149–156. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.B.; Liu, D.F.; Wang, Y.C.; Gao, B.; Wang, L.; Duan, Y.J. Characteristics of heavy metal pollution in sediments at the Xiangxi Bay of Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2011, 20, 983–989. (In Chinese) [Google Scholar]
- Singh, K.P.; Mohan, D.; Singh, V.K.; Malik, A. Studies on distribution and fractionation of heavy metals in Gomati river sediments d a tributary of the Ganges, India. J. Hydrol. 2005, 312, 14–27. [Google Scholar] [CrossRef]
Sampling Sites | Cu | Zn | Cd | Pb | Cr | Ni | References | |
---|---|---|---|---|---|---|---|---|
Mainstream | TGR-1985 (N = 17) | 62.5 | 160.6 | 0.27 | 25.7 | 145.1 | 36.9 | [40] |
TGR < 2005 (N = 126) | 53.52 | 146.8 | 0.605 | 50.84 | 87.15 | 37.11 | [39] | |
TGR-2014 (N = 24) | 54.2 | 174 | 0.878 | 51 | 86.8 | 42.7 | [22,42] | |
A review | 60.82 ± 28.07 | 148.11 ± 60.84 | 0.63 ± 0.81 | 42.73 ± 21.73 | 125.56 ± 71.97 | 42.31 ± 7.43 | [28] | |
Tributaries | TGR-2008 (N =2 4) | 76.03 | 137.63 | 0.75 | 59.4 | 86.31 | 46.81 | [43] |
TGR-2010 (N = 73) | 56.4 | 130.3 | 0.9 | 44 | 84.9 | 45.7 | [24] | |
A review | 53.31 ± 25.88 | 129.16 ± 75.92 | 0.72 ± 0.67 | 42.93 ± 23.06 | 79.28 ± 28.60 | 42.45 ± 8.80 | [28] | |
Mainstream (N = 34) | Mean ± SD | 61.00 ± 15.04 (24.7%) * | 151.63 ± 26.40 (17.4%) | 0.92 ± 0.29 (31.4%) | 55.38 ± 10.45 (18.9%) | 101.43 ± 18.99 (18.7%) | 43.00 ± 8.63 (20.1%) | This study |
Range | 35.26–96.34 | 106.73–204.83 | 0.61–2.10 | 40.90–83.06 | 70.32–171.12 | 27.88–55.89 | ||
Tributaries (N = 9) | Mean ± SD | 52.92 ± 14.45 (27.3%) | 138.34 ± 20.37 (14.7%) | 0.86 ± 0.22 (25.2%) | 48.19 ± 9.85 (20.4%) | 92.98 ± 7.76 (8.4%) | 44.86 ± 3.03 (6.8%) | |
Range | 34.25–86.37 | 99.08–180.06 | 0.48–1.30 | 28.77–67.81 | 84.39–111.46 | 39.54–50.65 | ||
Soil standards (GB 15618–1995) | I | 35 | 100 | 0.2 | 35 | 90 | 40 | [41] |
II (pH > 7.5) | 100 | 300 | 0.6 | 350 | 350 | 60 | ||
III | 400 | 500 | 1.0 | 500 | 400 | 200 |
D50 | Turb | DO | H | TOC | TN | TP | PAHs | PAEs | |
---|---|---|---|---|---|---|---|---|---|
Cu | −0.319 * | −0.268 | −0.452 ** | 0.253 | 0.172 | −0.086 | −0.156 | 0.298 | 0.314 |
Zn | −0.222 | −0.182 | −0.450 ** | 0.351 * | 0.453 | −0.074 | −0.120 | 0.305 | 0.362 * |
Cd | 0.318 * | 0.007 | −0.141 | −0.010 | 0.134 | 0.002 | 0.176 | 0.463 ** | 0.437* |
Pb | −0.336 * | −0.042 | −0.464 ** | 0.333 * | 0.359 | −0.086 | −0.116 | 0.321 | 0.351 * |
Cr | −0.196 | −0.250 | −0.190 | 0.171 | −0.212 | 0.158 | 0.141 | 0.251 | 0.351 * |
Ni | −0.664 ** | −0.542 ** | −0.559 ** | 0.564 ** | 0.491 | −0.178 | −0.443 | 0.108 | 0.221 |
D50 | Turb | DO | H | TOC | |
---|---|---|---|---|---|
Kd_Cu | −0.511 ** | −0.425 ** | −0.397 ** | 0.295 | 0.124 |
Kd_Zn | −0.417 ** | −0.375 * | −0.483 ** | 0.126 | 0.284 |
Kd_Cd | −0.642 ** | −0.497 ** | −0.539 ** | 0.520 ** | 0.372 |
Kd_Pb | −0.613 ** | −0.422 ** | −0.509 ** | 0.493 ** | 0.433 |
Kd_Cr | −0.332 * | −0.325 * | −0.154 | 0.103 | −0.366 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Fang, H.; Ni, K.; Yang, W.; Zhao, W.; He, G.; Han, Y.; Li, X. Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables. Water 2018, 10, 1840. https://doi.org/10.3390/w10121840
Huang L, Fang H, Ni K, Yang W, Zhao W, He G, Han Y, Li X. Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables. Water. 2018; 10(12):1840. https://doi.org/10.3390/w10121840
Chicago/Turabian StyleHuang, Lei, Hongwei Fang, Ke Ni, Wenjun Yang, Weihua Zhao, Guojian He, Yong Han, and Xiaocui Li. 2018. "Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables" Water 10, no. 12: 1840. https://doi.org/10.3390/w10121840
APA StyleHuang, L., Fang, H., Ni, K., Yang, W., Zhao, W., He, G., Han, Y., & Li, X. (2018). Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables. Water, 10(12), 1840. https://doi.org/10.3390/w10121840