Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. The Model and the Simulation Design
3.1.1. Description of the SWAT Model
3.1.2. Model Input Data
- Weather Data
- Land Use/Vegetation Cover
- Soil
3.1.3. Model Setup
3.1.4. Calibration and Validation
3.2. Land Use Scenario
4. Results
4.1. Model Calibration and Efficiency
4.1.1. Model Calibration
4.1.2. Efficiency
4.1.3. Water Balance Components at the Scale of the Hydrological Response Units
4.2. Scenario Application
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coe, M.T.; Macedo, M.N.; Brando, P.M.; Lefebvre, P.; Panday, P.; Silvério, D. The Hydrology and Energy Balance of the Amazon Basin. In Interactions between Biosphere, Atmosphere and Human Land Use in the Amazon Basin; Nagy, L., Forsberg, B.R., Artaxo, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 34–53. ISBN 978-3-662-49902-3. [Google Scholar]
- Martini, D.Z.; Moreira, M.A.; Cruz de Aragão, L.E.O.E.; Formaggio, A.R.; Dalla-Nora, E.L. Potential land availability for agricultural expansion in the Brazilian Amazon. Land Use Policy 2015, 49, 35–42. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Da Motta, R.S.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; Mendes de Moura, Y.; Sellers, P.J. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 16041–16046. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.C.; de Carvalho, C.R.; Davidson, E.A.; Jipp, P.H.; Lefebvre, P.A.; Negreiros, G.H.; da Silva, E.D.; Stone, T.A.; Trumbore, S.E.; Vieira, S. The role of deeps roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 1994, 372, 666–669. [Google Scholar] [CrossRef]
- D’Almeida, C.; Vörösmarty, C.J.; Hurtt, G.C.; Marengo, J.A.; Dingman, S.L.; Keim, B.D. The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol. 2007, 27, 633–647. [Google Scholar] [CrossRef]
- Lamparter, G.; Nobrega, R.L.B.; Kovacs, K.; Amorim, R.S.; Gerold, G. Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Reg. Environ. Chang. 2016, 1–13. [Google Scholar] [CrossRef]
- Brown, D.S.; Brown, J.C.; Brown, C. Land occupations and deforestation in the Brazilian Amazon. Land Use Policy 2016, 54, 331–338. [Google Scholar] [CrossRef]
- Rivero, S.; Almeida, O.; Ávila, S.; Oliveira, W. Pecuária e desmatamento: Uma análise das principais causas diretas do desmatamento na Amazônia. Nov. Econ. 2009, 19, 41–66. [Google Scholar] [CrossRef]
- Fearnside, P.M. Desmatamento na Amazônia: Dinâmica, impactos e controle. Acta Amaz. 2006, 36, 395–400. [Google Scholar] [CrossRef]
- Laurent, F.; Arvor, D.; Daugeard, M.; Osis, R.; Tritsch, I.; Coudel, E.; Piketty, M.-G.; Piraux, M.; Viana, C.; Dubreuil, V.; et al. Le tournant environnemental en Amazonie: Ampleur et limites du découplage entre production et déforestation. EchoGéo 2017, 41, 1–27. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais (INPE). PROJETO PRODES DIGITAL: Mapeamento do desmatamento da Amazônia com Imagens de Satélite. Available online: http://www.obt.inpe.br/prodes/index.php (accessed on 22 February 2017).
- Refsgaard, J.C.; Abbott, M.B. The role of distributed hydrological modelling in water resources management. In Distributed Hydrological Modelling; Abbott, M.B., Refsgaard, J.C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; Volume 22, 336p, ISBN 0-7923-4042-6. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E.; Stedinger, J.R.; Dijkman, J.P.M.; Villars, M.T. Water Resources Systems Planning and Management and Applications: An Introduction to Methods, Models and Applications; United Nations Educational (UNESCO): Bangalore, India, 2005; pp. 39–56. ISBN 92-3-103998-9. [Google Scholar]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Kamali, B.; Kouchi, D.H.; Yang, H.; Abbaspour, K.C. Multilevel drought hazard assessment under climate change scenarios in semi-arid regions-a case study of the karkheh river basin in Iran. Water 2017, 9, 214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Wang, Q.; Wang, J.; Li, H.; Zhai, J.; Zhu, Y.; Li, J. Impact of land use on frequency of floods in Yongding River Basin, China. Water 2016, 8, 401. [Google Scholar] [CrossRef]
- Lima, L.S.; Coe, M.T.; Soares Filho, B.S.; Cuadra, S.V.; Dias, L.C.P.; Costa, M.H.; Lima, L.S.; Rodrigues, H.O. Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: Implications for the provision of ecosystem services. Landsc. Ecol. 2014, 29, 261–274. [Google Scholar] [CrossRef]
- Coe, M.T.; Costa, M.H.; Soares-Filho, B.S. The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J. Hydrol. 2009, 369, 165–174. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assesment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.P.W.; Reyes, M.M.R.; Green, C.C.H.; Arnold, J.J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans. ASAE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil and Water Assessment Tool; Theoretical Documentation: Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Silva, J.D.P. Avaliação da diversidade de padrões de canais fluviais e da geodiversidade na Amazônia—Aplicação e discussão na Bacia Hidrografica do Rio Xingu. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2012. [Google Scholar]
- Lucas, E.W.M.; Assis, F.D.E.; Sousa, S.D.E.; Daniel, F.; Santos, D.O.S.; Lucio, P.S. Modelagem hidrológica determinística e estocástica aplicada à região hidrográfica do Xingu—Pará. Rev. Bras. Meteorol. 2009, 24, 308–322. [Google Scholar] [CrossRef]
- Centrais Eleétricas Brasileiras S.A. (Eletrobras). AAI—Avaliação Ambiental Integrada dos aproveitamentos hidroelétricos da bacia do rio Xingu. Available online: http://eletrobras.com/pt/AreasdeAtuacao/geracao/belo_monte/AAI-Xingu-Volume-I.pdf (accessed on 24 November 2016).
- De Almeida, C.A.; Coutinho, A.C.; César, J.; Mora, D.; Adami, M.; Venturieri, A.; Diniz, C.G.; Dessay, N.; Durieux, L.; Gomes, A.R. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz. 2016, 46, 291–302. [Google Scholar] [CrossRef]
- Villas-Boas, A. De olho na Bacia do Xingu; Instituto Socioambiental: São Paulo, Brazil, 2012; ISBN 978-85-85994-97. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Volk, M.; Williams, J.R.; Bosch, D.D. Assessment of Different Representations of Spatial Variability on SWAT Model Performance. Trans. ASABE 2010, 53, 1433–1443. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM). Available online: https://earthexplorer.usgs.gov/ (accessed on 26 November 2016).
- Brazilian National Institute of Meteorology (INMET). Banco de Dados Meteorológicos para Ensino e Pesquisa. Available online: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep (accessed on 13 December 2016).
- National Aeronautics and Space Agency (NASA). TRMM 3B42 Daily v.7 Product. Available online: https://disc.sci.gsfc.nasa.gov/SSW/#keywords= (accessed on 15 December 2016).
- European Centre for Medium-Range Weather Forecasts (ECMWF). Era Interim Daily Database. Available online: http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 26 February 2017).
- Brasilian Institute of Geography and Statistics (IBGE). Mapa pedológico da Amazonia Legal 1:250.000. Available online: ftp://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/vetores/escala_250_mil/amazonia_legal/ (accessed on 24 November 2016).
- Wagner, P.D.; Kumar, S.; Fiener, P.; Schneider, K. Technical Note: Hydrological Modeling with SWAT in a Monsoon-Driven Environment: Experience from the Western Ghats, India. Trans. ASABE 2011, 54, 1783–1790. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Model. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Alemayehu, T.; Van Griensven, A.; Woldegiorgis, B.T.; Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 2017, 21, 4449–4467. [Google Scholar] [CrossRef]
- Wagner, F.H.; Hérault, B.; Rossi, V.; Hilker, T.; Maeda, E.E.; Sanchez, A.; Lyapustin, A.I.; Galvão, L.S.; Wang, Y.; Aragão, L.E.O.C. Climate drivers of the Amazon forest greening. PLoS ONE 2017, 12, 0180932. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 2017, 114, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.E.; Ma, X.; Wagner, F.; Kim, H.; Oki, T.; Eamus, D. Evapotranspiration seasonality across the Amazon basin Evapotranspiration seasonality across the Amazon basin. Earth Syst. Dyn. 2017, 8, 439. [Google Scholar] [CrossRef]
- Kleidon, A.; Heimann, M. Assessing the role of deep rooted vegetation in the climate system with model simulations: Mechanism, comparison to observations and implications for Amazonian deforestation. Clim. Dyn. 2000, 16, 183–199. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33, 2–5. [Google Scholar] [CrossRef]
- Negrón Juárez, R.I.; Hodnett, M.G.; Fu, R.; Gouden, M.L.; von Randow, C. Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site. J. Clim. 2007, 20, 2827–2839. [Google Scholar] [CrossRef]
- Huete, A.R.; Ferreira, L.G.; Miura, T. LBA-ECO LC-19 Soil and Vegetation Data for Cerrado and Forested Sites, Brazil: 2002. ORNL DAAC 2014. [Google Scholar] [CrossRef]
- Asner, G.P.; Olander, L.P. LBA-ECO LC-21 Foliar Nutrients, Logged Areas, Tapajos Forest, Para, Brazil: 2003. ORNL DAAC 2014. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Batistella, M.; Moran, E.F. LBA-ECO LC-09 Vegetation Composition and Structure in the Brazilian Amazon: 1992–1995. ORNL DAAC 2009. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M. Pedotransfer functions for tropical soils. Dev. Soil Sci. 2004, 30, 415–429. [Google Scholar] [CrossRef]
- Quesada, C.A.; Lloyd, J.; Anderson, L.O.; Fyllas, N.M.; Schwarz, M.; Czimczik, C.I. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 2011, 8, 1415–1440. [Google Scholar] [CrossRef]
- Quesada, C.A.; Lloyd, J.; Schwarz, M.; Patiño, S.; Baker, T.R.; Czimczik, C.; Fyllas, N.M.; Martinelli, L.; Nardoto, G.B.; Schmerler, J.; et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 2010, 7, 1515–1541. [Google Scholar] [CrossRef] [Green Version]
- Brondizio, E.S.; Moran, E.F. LBA-ECO LC-09 Soil Composition and Structure in the Brazilian Amazon: 1992–1995. ORNL DAAC 2009. [Google Scholar] [CrossRef]
- Sartori, A.; Neto, F.L.; Genovez, A.M. Classificação Hidrológica de Solos Brasileiros para a Estimativa da Chuva Excedente com o Método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Rev. Bras. Recur. Hidr. 2005, 10, 5–18. [Google Scholar]
- Brazilian Agricultural Research Corporation (EMBRAPA/FAO). Caracterização físico hídrica dos principais solos da Amazônia Legal: Volume I—Estado do Pará; EMBRAPA/FAO: Belém, Brazil, 1991. [Google Scholar]
- National Department of Mineral Production. Projeto RADAM. Folha SA.22 Belém; Geologia, Geomorfologia, Solos, Vegetação, uso Potencial da Terra; National Department of Mineral Production: Rio de Janeiro, Brazil, 1974. [Google Scholar]
- National Department of Mineral Production. Projeto RADAM. Folha SB.22 Araguaia e Parte da Folha SC.22 Tocantins; Geologia, Geomorfologia, Solos, Vegetação, uso Potencial da Terra; National Department of Mineral Production: Rio de Janeiro, Brazil, 1974. [Google Scholar]
- Barros, H.S.; Fearnside, P.M. Pedo-Transfer Functions for Estimating Soil Bulk Density in Central Amazonia. Rev. Bras. Ciência do Solo 2015, 39, 397–407. [Google Scholar] [CrossRef]
- Barros, A.H.C.; van Lier, Q.d.J. Pedotransfer Functions for Brazilian Soils. In Application of Soil Physics in Environmental Analyses Measuring, Modelling and Data Integration; Teixeira, W.G., Ceddia, M.B., Ottoni, M.V., Donnagema, G.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 128–162. [Google Scholar]
- Bernoux, M.; Arrouays, D.; Cerri, C.; Volkoff, B.; Jolivet, C. Bulk density of Brazilian Amazon soils related to other soil properties. Soil Sci. J. 1998, 162, 743–749. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J.G. Arcswat Interface for SWAT2012: User’s Guide; Blackland Research Center, Texas AgriLife Research: Temple, TX, USA, 2013. [Google Scholar]
- Hargreaves, G.; Hargreaves, G.; Riley, J. Agricultural benefits for Senegal River Basin. J. Irrig. Drain. Eng. 1985, 111, 113–124. [Google Scholar] [CrossRef]
- USDA Soil Conservation Service. National Engineering Handbook; Section 4, Hydrology, Chapter 21; USDA Soil Conservation Service: Washington, DC, USA, 1972.
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Pai, N.; Saraswat, D. SWAT2009_LUC: A Tool to Activate the Land Use Change Module in SWAT 2009. Trans. ASABE 2011, 54, 1649–1658. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T. Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Sci. Technol. 2006, 53, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, K. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Duebendorf, Switzerland, 2015; p. 103. [Google Scholar]
- Nash, J.E.; Sutcliffe, J. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1979, 10, 282–290. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T. A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. J. Hydroinform. 2007, 9, 277. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modelling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Voll, E.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; McDonald, A.; Lefebvre, P.; Schlesinger, P. LBA-ECO LC-14 Modeled Deforestation Scenarios, Amazon Basin: 2002–2050. ORNL DAAC 2013. [Google Scholar] [CrossRef]
- Bi, J.; Knyazikhin, Y.; Choi, S.; Park, T.; Barichivich, J.; Ciais, P.; Fu, R.; Ganguly, S.; Hall, F.; Hilker, T.; et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 2015, 10, 64014. [Google Scholar] [CrossRef]
- Malhado, A.C.M.; Costa, M.H.; de Lima, F.Z.; Portilho, K.C.; Figueiredo, D.N. Seasonal leaf dynamics in an Amazonian tropical forest. For. Ecol. Manag. 2009, 258, 1161–1165. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G.; Cuartas, L.A.; Nobre, A.D.; Waterloo, M.J.; Oliveira, S.M. The water balance of an Amazonian micro-catchment: The effect of interannual variability of rainfall on hydrological behaviour. Hydrol. Process. 2008, 22, 2133–2147. [Google Scholar] [CrossRef]
- Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; Castanho, A.D.d.A. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523, 822–829. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Simmons, L.A.; Anderson, S.H. Effects of logging activities on selected soil physical and hydraulic properties for a claypan landscape. Geoderma 2016, 269, 145–152. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Forests and Water: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; FAO: Rome, Italy, 2008. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill, Inc.: New York, NY, USA, 1959. [Google Scholar]
- Lane, L.J. Transmission losses. In SCS National Enginnering Handbook Section 4, Hydrology; Soil Conservation Service, U.S. Department of Agriculture: Washington, DC, USA, 1983; pp. 19:1–9:21. [Google Scholar]
- Hoorn, C.; Roddaz, M.; Dino, R.; Soares, E.; Uba, C. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia). In Amazonia: Landscape and Species Evolution; Hoorn, C., Wesselingh, F.P., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2009; pp. 103–122. ISBN 978-1-4051-8113-6. [Google Scholar]
- Schneider, R. Groundwater Provinces of Brazil; Prepared in Cooperation with the Government of Brazil and the United States Operation Mission to Brazil; United States Government Publishing Office: Washington, DC, USA, 1963.
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Cristina, L.; Dias, P.; Macedo, M.N.; Heil, M.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef]
- Biggs, T.W.; Dunne, T.; Muraoka, T. Transport of water, solutes and nutrients from a pasture hillslope, southwestern Brazilian Amazon. Hydrol. Process. 2006, 20, 2527–2547. [Google Scholar] [CrossRef]
- De Moraes, J.; Schuler, A.E.; Dunne, T.; Figueiredo, R.O.; Victoria, R.L. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrol. Process. 2006, 20, 2509–2526. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Davidson, E.A.; De Araüjo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Mercedes, M.M.; Coe, M.T.; Defries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, S.J.; Neill, C.; Porder, S.; Mchorney, R.; Lefebvre, P.; Coe, M.T.; Elsenbeer, H.; Krusche, A.V. Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob. Chang. Biol. 2011, 17, 1821–1833. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G. Potential groundwater contribution to Amazon evapotranspiration. Hydrol. Earth Syst. Sci. 2010, 14, 2039–2056. [Google Scholar] [CrossRef] [Green Version]
- Chaves, J.; Neill, C.; Germer, S.; Gouveia Neto, S.; Krusche, A.; Elsenbeer, H. Land management impacts on runoff sources in small Amazon watersheds. Hydrol. Process. 2008, 22, 1766–1775. [Google Scholar] [CrossRef]
- Zimmermann, B.; Elsenbeer, H.; De Moraes, J.M. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. For. Ecol. Manag. 2006, 222, 29–38. [Google Scholar] [CrossRef]
- Martínez, L.J.; Zinck, J.A. Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res. 2004, 75, 3–17. [Google Scholar] [CrossRef]
- Scheffler, R.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 2011, 144, 281–289. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. (De)forestation and dry season flow in the tropics: A closer look. J. Trop. For. Sci. 1989, 1, 229–243. [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Rodrigues, A.S.L.; Ewers, R.M.; Parry, L.; Souza, C.; Veríssimo, A.; Balmford, A. Boom-and-bust development patterns across the amazon deforestation frontier. Science 2009, 324, 1435–1437. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, W.J. Evaporation from Amazonian Rainforest. Proc. R. Soc. B Biol. Sci. 1988, 233, 321–346. [Google Scholar] [CrossRef]
Input Data | Source | Description (Time Series) |
---|---|---|
Digital Elevation Model (DEM) | Shuttle Radar Topography Mission [34] | SRTM 3 arc-seconds for global coverage—~90 m |
Weather | Brazilian Meteorological Service [35] | Daily precipitation, daily temperature (min., max.), solar radiation, relative air humidity, wind speed (1970–2015) |
Precipitation | TRMM product 3B42 V.7 Daily product [36] | Daily TRMM precipitation estimates for a 0.25° grid (1998–2015) |
Temperature | ERA Interim Daily Product [37] | Daily Temperature for a 1° grid (1998–2015) |
Land Use/vegetation cover | TerraClass project [31] and database from literature | Land use/vegetation cover map 1:250,000 and specific vegetation parameters |
Soil | Soil map [38] and pedotransfer functions | Soil map 1:250,000 and specific soil properties for each soil type |
Parameter [Land Use/Vegetation Cover] | Parameter Description [Model File] | Sensitivity Ranking | Initial Range | Final Calibrated Range | Best Calibrated Value | Degree (%) of Uncertainty ** |
---|---|---|---|---|---|---|
*v__CN2 b [Evergreen Forest] | Initial SCS runoff curve number for moisture condition II [*.mgt] | 2 | 20–82 | 23–64 | 32 | 66.13 |
*v__CN2 b [Pasture] | 3 | 35–82 | 52–72 | 66 | 42.55 | |
*v__CH_K2 a | Effective hydraulic conductivity in main channel alluvium (mm h−1) [*.rte] | 8 | 0–150 | 49–82 | 63 | 22 |
*v__CH_N2 a | Manning’s “n” value for the main channel [*.rte] | 5 | 0.1–0.3 | 0.03–0.09 | 0.078 | 30 |
*v__GW_DELAY [Evergreen Forest] | Groundwater delay time (days) [*.gw] | 7 | 0–200 | 10–55 | 29 | 22.5 |
*v__GW_DELAY [Pasture] | 6 | 0–200 | 63–115 | 92 | 26 | |
*v__GWQMN [Evergreen Forest] | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) [*.gw] | 1 | 0–1000 | 30–147 | 103 | 11.7 |
*v__GWQMN [Pasture] | 4 | 0–1000 | 41–156 | 130 | 11.5 |
Coefficient | Calibration Period | Validation Period | Entire Series | Classification for Entire Series |
---|---|---|---|---|
R2 | 0.86 | 0.95 | 0.88 | - |
NSE | 0.85 | 0.94 | 0.87 | Very good |
RSR | 0.38 | 0.25 | 0.36 | Very good |
PBIAS (%) | −7.47 | −3.2 | −6.36 | Very good |
Base Scenario | Q (mm) | ET (mm) | SurfQ (mm) | Perc (mm) |
---|---|---|---|---|
2014 | 862 | 1161 | 70 | 609 |
Scenario | pQ (%) | pET (%) | pSurfQ (%) | pPerc (%) |
2020 | 0.3 | −0.1 | 6.6 | −0.1 |
2030 | 1.8 | −1.9 | 51.1 | −7.2 |
2040 | 5.1 | −6.6 | 119.8 | −16.5 |
2050 | 6.5 | −10.6 | 183.1 | −21.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water 2018, 10, 429. https://doi.org/10.3390/w10040429
Dos Santos V, Laurent F, Abe C, Messner F. Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water. 2018; 10(4):429. https://doi.org/10.3390/w10040429
Chicago/Turabian StyleDos Santos, Vanessa, François Laurent, Camila Abe, and François Messner. 2018. "Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon" Water 10, no. 4: 429. https://doi.org/10.3390/w10040429
APA StyleDos Santos, V., Laurent, F., Abe, C., & Messner, F. (2018). Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water, 10(4), 429. https://doi.org/10.3390/w10040429