Meteorological Driving Mechanisms and Human Impacts of the February 1979 Extreme Hydro-Geomorphological Event in Western Iberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historical Data Sources
2.2. River Flow Data
2.3. The 20th Century Reanalysis
2.4. ECMWF Reanalysis
2.5. Iberian Peninsula High Resolution Precipitation
2.6. Precipitation Extremes
2.7. Circulation Weather Types
2.8. Atmospheric Rivers
3. Results
3.1. 5–16 February 1979 Event
3.2. Socio-Economic Impacts in the Tagus Basin
3.3. Precipitation Event
3.4. Large Scale Atmospheric Circulation
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pereira, S.; Ramos, A.M.; Zêzere, J.L.; Trigo, R.M.; Vaquero, J.M. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia. Nat. Hazards Earth Syst. Sci. 2016, 16, 371–390. [Google Scholar] [CrossRef]
- Trigo, R.M.; Varino, F.; Ramos, A.M.; Valente, M.; Zêzere, J.L.; Vaquero, J.M.; Gouveia, C.M.; Russo, A. The record precipitation and flood event in Iberia in December 1876: Description and synoptic analysis. Front. Earth Sci. 2014, 2, 3. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R. A ranking of high-resolution daily precipitation extreme events for the Iberian Peninsula. Atmos. Sci. Lett. 2014, 15, 328–334. [Google Scholar] [CrossRef]
- Trigo, R.M.; Ramos, C.; Pereira, S.S.; Ramos, A.M.; Zêzere, J.L.; Liberato, M.L.M.L.R. The deadliest storm of the 20th century striking Portugal; flood impacts and atmospheric circulation. J. Hydrol. 2016, 541, 597–610. [Google Scholar] [CrossRef]
- Santos, M.; Santos, J.A.; Fragoso, M. Atmospheric driving mechanisms of flash floods in Portugal. Int. J. Climatol. 2017, 37, 671–680. [Google Scholar] [CrossRef]
- Fragoso, M.; Trigo, R.M.; Pinto, J.G.; Lopes, S.; Lopes, A.; Ulbrich, S.; Magro, C. The 20 February 2010 Madeira flash-floods: Synoptic analysis and extreme rainfall assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 715–730. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; DaCamara, C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 2000, 20, 1559–1581. [Google Scholar] [CrossRef]
- Ramos, A.M.; Cortesi, N.; Trigo, R.M. Circulation weather types and spatial variability of daily precipitation in the Iberian Peninsula. Front. Earth Sci. 2014, 2, 25. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R.; Tomé, R. Daily Precipitation Extreme Events in the Iberian Peninsula and Its Association with Atmospheric Rivers. J. Hydrometeorol. 2015, 16, 579–597. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Vázquez, M.; Lavers, D.A. Atmospheric rivers: A mini-review. Front. Earth Sci. 2014, 2. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Tavares, A.O.; Bateira, C.; Trigo, R.M.; Quaresma, I.; Santos, P.P.; Santos, M.; Verde, J. DISASTER: A GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards 2014, 72, 503–532. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 2000, 58, 89–107. [Google Scholar] [CrossRef]
- Pereira, S.; Zêzere, J.L.; Quaresma, I.D.; Bateira, C. Landslide incidence in the North of Portugal: Analysis of a historical landslide database based on press releases and technical reports. Geomorphology 2014, 214, 514–525. [Google Scholar] [CrossRef]
- Pereira, S.; Ramos, A.M.; Rebelo, L.; Trigo, R.M.; Zêzere, J.L. Hydro-geomorphologic events in Portugal and its association with Circulation weather types. In Proceedings of the 19th EGU General Assembly (EGU2017), Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Belo-Pereira, M.; Dutra, E.; Viterbo, P. Evaluation of global precipitation data sets over the Iberian Peninsula. J. Geophys. Res. Atmos. 2011, 116, D20101. [Google Scholar] [CrossRef]
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R. Ranking of multi-day extreme precipitation events over the Iberian Peninsula. Int. J. Climatol. 2017, 37, 607–620. [Google Scholar] [CrossRef]
- Ludwig, P.; Schaffernicht, E.J.; Shao, Y.; Pinto, J.G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res. Atmos. 2016, 121, 2130–2145. [Google Scholar] [CrossRef]
- Ramos, C.; Reis, E. As cheias no Sul de Portugal em diferentes tipos de bacias hidrográficas. Finisterra 2001, 36, 61–82. [Google Scholar] [CrossRef]
- Sobrinho, A. Os temporais de Fevereiro de 1979 no Ribatejo e Região de Lisboa. Finisterra Rev. Port. Geogr. 1980, 25, 85–93. [Google Scholar] [CrossRef]
- Ferreira, A.B.; Zêzere, J.L.; Rodrigues, M.L. The Calhandriz landslide (Metropolitan area of Lisbon). In Landslides; Chacón, J., Irigaray, C., Fernández, J., Eds.; Balkema: Rotterdam, The Netherlands, 1996; pp. 31–38. ISBN 90 5410832 0. [Google Scholar]
- Intituto Nacional de Estatística. XII Recenseamento Geral da População; Intituto Nacional de Estatística: Lisboa, Portugal, 1981. [Google Scholar]
- Trigo, R.M.; Pozo-Vázquez, D.; Osborn, T.J.; Castro-Díez, Y.; Gámiz-Fortis, S.; Esteban-Parra, M.J. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- Barrera, A.; Llasat, M.C.; Barriendos, M. Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005. Nat. Hazards Earth Syst. Sci. 2006, 6, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Merino, A.; Fernández-Vaquero, M.; López, L.; Fernández-González, S.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E. Large-scale patterns of daily precipitation extremes on the Iberian Peninsula. Int. J. Climatol. 2016, 36, 3873–3891. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Duffourg, F.; Esteban, P.; Lorente, J. Mesoscale numerical analysis of the historical November 1982 heavy precipitation event over Andorra (Eastern Pyrenees). Nat. Hazards Earth Syst. Sci. 2013, 13, 2969–2990. [Google Scholar] [CrossRef] [Green Version]
River Basin | DISASTER Cases | DISASTER Cases (%) | Fatalities | Injuried | Evacuated People | Displaced People | Missing People | Total Affected People |
---|---|---|---|---|---|---|---|---|
Floods | ||||||||
Douro | 23 | 34.3 | 0 | 0 | 26 | 3595 | 0 | 3621 |
Águeda, Mondego and West basins | 6 | 9.0 | 0 | 0 | 17 | 100 | 0 | 117 |
Tagus | 33 | 49.3 | 3 | 0 | 4201 | 10,500 | 1 | 14,705 |
Total Floods | 62 | 92.5 | 3 | 0 | 4244 | 14,195 | 1 | 18,443 |
Landslides | ||||||||
Douro | 2 | 3.0 | 5 | 1 | 0 | 56 | 0 | 62 |
Águeda, Mondego and West basins | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tagus | 3 | 4.5 | 0 | 2 | 0 | 71 | 0 | 73 |
Total Landslides | 5 | 7.5 | 5 | 3 | 0 | 127 | 0 | 135 |
Total | 67 | 100 | 8 | 3 | 4244 | 14,322 | 1 | 18,578 |
Code (Figure 1) | Name | Altitude (m) | Data Series | Avg. Annual Max. Level (m) | Annual Max. Level (m) | Avg. Annual Max. Flow Rate (m3/s) | Max. Daily Flow Rate (m3/s) | Min. Flood Rate (m3/s) |
---|---|---|---|---|---|---|---|---|
A | Abrantes | 20 | 1973/74–2000/01 | 6.51 | 13.89 * | 2939.35 | 10,548.5 * | 1527.2 |
B | V. N. da Barquinha | 19 | 1974/75–2000/01 | 6.60 | 13.45 * | 3396.92 | 13,102.6 * | 1804.6 |
C | Santarém | 18 | 1972/73–2000/01 | 6.32 | 10.45 * | 3320.71 | 13,888.5 ** | 1774.2 |
Code (Figure 1) | Name | Days with Floods (1978/79) | Total Number of Days |
---|---|---|---|
A | Abrantes | 26–28, 30–31 December; 2, 4, 19–20, 27–28 January; 2–18 February; 15 April | 29 |
B | V. N. da Barquinha | 26–28, 30–31 December; 2, 4–5, 20, 23, 27–29 January; 2-20 February; 11, 14–14 April | 35 |
C | Santarém | 26 December–9 January; 20 January–23 February; 26–27 March; 11–12, 14–17 April | 57 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo, L.; Ramos, A.M.; Pereira, S.; Trigo, R.M. Meteorological Driving Mechanisms and Human Impacts of the February 1979 Extreme Hydro-Geomorphological Event in Western Iberia. Water 2018, 10, 454. https://doi.org/10.3390/w10040454
Rebelo L, Ramos AM, Pereira S, Trigo RM. Meteorological Driving Mechanisms and Human Impacts of the February 1979 Extreme Hydro-Geomorphological Event in Western Iberia. Water. 2018; 10(4):454. https://doi.org/10.3390/w10040454
Chicago/Turabian StyleRebelo, Luís, Alexandre M. Ramos, Susana Pereira, and Ricardo M. Trigo. 2018. "Meteorological Driving Mechanisms and Human Impacts of the February 1979 Extreme Hydro-Geomorphological Event in Western Iberia" Water 10, no. 4: 454. https://doi.org/10.3390/w10040454
APA StyleRebelo, L., Ramos, A. M., Pereira, S., & Trigo, R. M. (2018). Meteorological Driving Mechanisms and Human Impacts of the February 1979 Extreme Hydro-Geomorphological Event in Western Iberia. Water, 10(4), 454. https://doi.org/10.3390/w10040454