Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Sampling and Measurements
2.3. Calculation of Evaporation from the Micro-Lysimeter
3. Results and Discussion
3.1. Frost Depth, Precipitation and Air Temperature
3.2. Soil Evaporation in the Micro-Lysimeter under Sand Mulches with Different Particle Sizes
3.2.1. Cumulative Evaporation
3.2.2. Evaporation Rate
3.3. Factors That Influence Soil Evaporation
3.3.1. Unstable Freezing Stage
3.3.2. Stable Freezing Stage
3.3.3. Thawing Stage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Components | LD | XS | CS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Eigenvalues | Contribution Rate | Cumulative Contribution Rate | Eigenvalues | Contribution Rate | Cumulative Contribution Rate | Eigenvalues | Contribution Rate | Cumulative Contribution Rate | ||
P1 | 1 | 4.46 | 44.60 | 44.60 | 4.68 | 46.81 | 46.81 | 4.25 | 42.54 | 42.54 |
2 | 2.61 | 26.12 | 70.72 | 2.37 | 23.74 | 70.55 | 2.87 | 28.71 | 71.25 | |
3 | 2.02 | 20.15 | 90.87 | 1.87 | 18.66 | 89.21 | 1.82 | 18.15 | 89.40 | |
4 | 0.77 | 7.73 | 98.60 | 0.74 | 7.44 | 96.65 | 0.91 | 9.11 | 98.51 | |
5 | 0.14 | 1.40 | 100 | 0.34 | 3.35 | 100 | 0.15 | 1.5 | 100 | |
6 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
7 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
8 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
9 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
10 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
P2 | 1 | 5.98 | 59.78 | 59.78 | 5.80 | 57.98 | 57.98 | 5.12 | 51.24 | 51.24 |
2 | 2.44 | 24.38 | 84.16 | 2.32 | 23.20 | 81.18 | 3.18 | 31.78 | 83.02 | |
3 | 0.97 | 9.72 | 93.88 | 1.05 | 10.51 | 91.69 | 1.05 | 10.51 | 93.53 | |
4 | 0.61 | 6.12 | 100 | 0.83 | 8.31 | 100 | 0.65 | 6.47 | 100 | |
5 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
6 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
7 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
8 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
9 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
10 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
P3 | 1 | 5.84 | 58.42 | 58.42 | 6.11 | 61.07 | 61.07 | 6.14 | 61.44 | 61.44 |
2 | 2.13 | 21.32 | 79.74 | 1.82 | 18.22 | 79.29 | 1.76 | 17.60 | 79.04 | |
3 | 1.03 | 10.29 | 90.03 | 1.10 | 10.96 | 90.25 | 1.09 | 10.95 | 89.98 | |
4 | 0.74 | 7.43 | 97.46 | 0.72 | 7.17 | 97.41 | 0.74 | 7.43 | 97.41 | |
5 | 0.22 | 2.22 | 99.68 | 0.21 | 2.09 | 99.51 | 0.21 | 2.10 | 99.51 | |
6 | 0.03 | 0.32 | 100 | 0.05 | 0.50 | 100 | 0.05 | 0.49 | 100 | |
7 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
8 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
9 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
10 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Stages | Treatments | Components | x1′ | x2′ | x3′ | x4′ | x5′ | x6′ | x7′ | x8′ | x9′ | x10′ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | LD | 1 | 0.33 | 0.28 | 0.42 | −0.33 | −0.20 | 0.11 | 0.34 | 0.06 | −0.38 | 0.46 |
2 | 0.42 | −0.24 | 0.28 | 0.25 | 0.56 | 0.35 | −0.10 | 0.42 | 0.05 | −0.01 | ||
3 | −0.03 | 0.45 | −0.05 | 0.37 | 0.00 | −0.37 | 0.44 | 0.47 | 0.34 | 0.04 | ||
XS | 1 | 0.25 | 0.36 | 0.37 | −0.33 | −0.34 | 0.06 | 0.39 | 0.05 | −0.29 | 0.45 | |
2 | 0.54 | −0.24 | 0.30 | 0.32 | 0.41 | 0.31 | −0.09 | 0.40 | −0.14 | 0.08 | ||
3 | −0.02 | 0.32 | 0.03 | 0.36 | −0.08 | −0.43 | 0.33 | 0.55 | 0.39 | −0.10 | ||
CS | 1 | 0.33 | 0.32 | 0.40 | −0.33 | −0.11 | 0.14 | 0.38 | 0.08 | −0.32 | 0.48 | |
2 | 0.43 | −0.32 | 0.29 | 0.35 | 0.53 | 0.28 | −0.17 | 0.34 | −0.09 | −0.03 | ||
3 | 0.05 | 0.33 | −0.05 | 0.31 | 0.01 | −0.43 | 0.38 | 0.59 | 0.32 | −0.05 | ||
P2 | LD | 1 | −0.37 | 0.30 | 0.32 | 0.36 | 0.23 | −0.15 | −0.30 | 0.40 | 0.39 | −0.26 |
2 | 0.26 | 0.30 | −0.35 | 0.16 | 0.46 | 0.53 | −0.32 | −0.02 | 0.04 | 0.30 | ||
XS | 1 | −0.35 | 0.34 | 0.29 | 0.31 | 0.29 | −0.13 | −0.31 | 0.40 | 0.41 | −0.24 | |
2 | 0.31 | 0.33 | −0.30 | 0.38 | 0.38 | 0.49 | −0.18 | −0.13 | 0.00 | 0.36 | ||
3 | −0.11 | 0.28 | −0.42 | 0.20 | 0.21 | −0.51 | 0.59 | −0.17 | 0.11 | −0.02 | ||
CS | 1 | −0.41 | 0.28 | 0.35 | 0.11 | −0.17 | −0.20 | −0.30 | 0.44 | 0.41 | −0.30 | |
2 | 0.16 | 0.37 | −0.12 | 0.53 | 0.51 | 0.40 | −0.27 | 0.05 | 0.14 | 0.17 | ||
3 | −0.11 | 0.34 | −0.52 | 0.19 | 0.10 | −0.43 | 0.53 | −0.08 | 0.22 | −0.19 | ||
P3 | LD | 1 | 0.36 | 0.38 | 0.36 | −0.26 | −0.01 | 0.26 | −0.35 | −0.38 | −0.20 | 0.39 |
2 | −0.12 | 0.18 | −0.22 | 0.53 | 0.66 | −0.01 | −0.31 | −0.10 | −0.30 | −0.02 | ||
3 | 0.24 | 0.10 | −0.28 | −0.03 | 0.24 | 0.35 | −0.19 | 0.29 | 0.72 | 0.18 | ||
XS | 1 | 0.34 | 0.37 | 0.36 | −0.33 | −0.11 | 0.26 | −0.33 | −0.38 | −0.20 | 0.38 | |
2 | 0.04 | 0.22 | −0.24 | 0.43 | 0.71 | −0.01 | −0.42 | −0.05 | −0.12 | 0.08 | ||
3 | 0.39 | −0.02 | 0.15 | 0.10 | 0.07 | 0.10 | −0.06 | 0.31 | 0.80 | 0.23 | ||
CS | 1 | 0.34 | 0.36 | 0.35 | −0.32 | −0.18 | 0.27 | −0.32 | −0.38 | −0.20 | 0.38 | |
2 | 0.02 | 0.27 | −0.21 | 0.44 | 0.67 | −0.03 | −0.44 | −0.08 | −0.18 | 0.10 | ||
3 | 0.40 | 0.01 | 0.16 | 0.17 | 0.07 | 0.06 | −0.10 | 0.30 | 0.78 | 0.25 |
References
- Li, R.; Shi, H.; Flerchinger, G.N.; Akae, T.; Wang, C. Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District. Geoderma 2012, 173, 28–33. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, Y.; Shao, M. Characteristics and numeric simulation of soil evaporation in biological soil crusts. J. Arid Environ. 2010, 74, 121–130. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.S.; Vera, C.L.; Zhang, Y.; Wang, J. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agric. Water Manag. 2009, 96, 374–382. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Fan, X.; Zhang, F.; Zhu, S.; Zhao, T. Trends of temperature and precipitation extremes in the Loess Plateau Region of China, 1961–2010. Theor. Appl. Climatol. 2017, 129, 949–963. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Q.; Zhao, X.; Wu, P.; Pan, W.; Gao, X.; Sun, M. Temporal and spatial evolution of the standardizedprecipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, F.; Ali, S. Impact of different types of mulches on soil moisture. Sarhad J. Agric. 2004, 20, 571–573. [Google Scholar]
- Yamanaka, T.; Inoune, M.; Kaihotsu, I. Effects of gravel mulch on water vapor transfer above and below the soil surface. Agric. Water Manag. 2004, 67, 145–155. [Google Scholar] [CrossRef]
- Demir, Z.; Yildiz, O.; Toprak, B. Water retention ratios of mulching material consisting primarily of pine bark over different soil types. Pak. J. Bot. 2009, 41, 1851–1859. [Google Scholar]
- Gilman, E.F.; Beeson, R.C.; Meador, D. Impact of mulch on water loss from a container substrate and native soil. Arboricult. Urban For. 2012, 38, 18–23. [Google Scholar]
- McMillen, M. The Effect of Mulch Type and Thickness on the Soil Surface Evaporation Rate; Horticulture and Crop Science Department, California Polythechnic State University: San Luis Obispo, CA, USA, 2013. [Google Scholar]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef]
- Farzi, R.; Gholami, M.; Baninasab, B.; Gheysari, M. Evaluation of different mulch materials for reducing soil surface evaporation in semi-arid region. Soil Use Manag. 2017, 33, 120–128. [Google Scholar] [CrossRef]
- Tesfuhuney, W.A.; Van Rensburg, L.D.; Walker, S.; Allemann, J. Quantifying and predicting soil water evaporation as influenced by runoff strip lengths and mulch cover. Agric. Water Manag. 2015, 152, 7–16. [Google Scholar] [CrossRef]
- Mahdavia, S.M.; Neyshabouria, M.R.; Fujimaki, H.; Majnooni Heris, A. Coupled heat and moisture transfer and evaporation in mulched soils. Catena 2017, 151, 34–48. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Cheng, G.; Malhi, S.S.; Vera, C.L.; Guo, Z.; Zhang, Y. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess plateau of northwest China. Agric. Water Manag. 2010, 97, 917–923. [Google Scholar] [CrossRef]
- Chen, W.; Jin, M.; Ferré Ty, P.A.; Liu, Y.; Yang, X.; Shan, T.; Ping, X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Res. 2018, 215, 207–221. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Wei, X.; Zhang, Z. Impacts of a grave-sand mulch and supplemental drip irrigation on watermelon (Citrullus lanatus [Thunb.] Mats. & Nakai) root distribution and yield. Soil Tillage Res. 2006, 89, 35–44. [Google Scholar]
- Yuan, C.; Zhang, X.; Lei, T.; Liu, H.; Li, X. Effects of mulching sand and gravel size on soil moisture evaporation. Trans. Chin. Soc. Agric. Eng. 2008, 24, 25–28. [Google Scholar]
- Qiu, Y.; Xie, Z.; Wang, Y.; Ren, J.; Sukhdev, S. Influence of gravel mulch stratum thickness and gravel grain size on evaporation resistance. J. Hydrol. 2014, 519, 1908–1913. [Google Scholar] [CrossRef]
- Fekri, M.; Kasmaei, L.S. Effects of windy sand and LECA mulches on decreasing evaporation from soil surface. Arab. J. Geosci. 2013, 6, 163–168. [Google Scholar] [CrossRef]
- Modaihsh, A.S.; Horton, R.; Kirkham, D. Soil water evaporation suppression by sand mulches. Soil Sci. 1985, 139, 357–361. [Google Scholar] [CrossRef]
- Kemper, W.D.; Nicks, A.D.; Corey, A.T. Accumulation of Water in Soils under Gravel and Sand Mulches. Soil Sci. Soc. Am. J. 1994, 58, 6–63. [Google Scholar] [CrossRef]
- Jiménez, C.C.; Tejedor, M.; Díaz, F.; Rodríguez, C.M. Effectiveness of sand mulch in soil and water conservation in an arid region, Lanzarote, Canary Islands, Spain. J. Soil Water Conserv. 2005, 60, 63–67. [Google Scholar]
- Miao, C.; Chen, J.; Zheng, X.; Zhang, Y.; Xu, Y.; Du, Q. Soil water and phreatic evaporation in shallow groundwater during a freeze–thaw period. Water 2017, 9, 396. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, J.; Wu, J.; Zeng, W. Effect of autumn irrigation on evaporation from seasonal frozen soils. In Proceedings of the Conference on water in Cold Region 4th, Fuyuan, China, 13–14 August 2011. [Google Scholar]
- Li, X. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena 2003, 52, 105–127. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.S.; Vera, C.L.; Zhang, Y. Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecol. Sin. 2014, 34, 261–265. [Google Scholar] [CrossRef]
- Zheng, W.; Paula, P.; Liu, Y.; Chi, W.; Pereira, L.S. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric. Water Manag. 2015, 147, 43–53. [Google Scholar]
- Chen, J.; Zheng, X.; Zhang, Y.; Qin, Z.; Sun, M. Simulation of Soil Moisture Evaporation under Different Groundwater Level Depths during Seasonal Freeze–thaw period. Trans. Chin. Soc. Agric. Mach. 2015, 46, 131–139. [Google Scholar]
- Wu, M.; Huang, J.; Wu, J.; Tan, X.; Jansson, P.E. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China. J. Hydrol. 2016, 535, 46–53. [Google Scholar] [CrossRef]
- Dall’Amico, M.; Endrizzi, S.; Gruber, S.; Rigon, R. A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere 2011, 5, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Jafarov, E.E.; Marchenko, S.S.; Romanovsky, V.E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 2012, 6, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Flerchinger, G.N.; Sauer, T.J.; Aiken, R.A. Effects of crop residue cover and architecture on heat and water transfer at the soil surface. Geoderma 2003, 116, 217–233. [Google Scholar] [CrossRef]
- Kaneko, T.; Kobayashi, T.; Wang, W.; Cho, H. Estimating evaporation in winter at a field irrigated late in autumn in Inner Mongolia, China. J. Fac. Agric. Kyushu Univ. 2006, 51, 407–411. [Google Scholar]
- Archer, N.A.L.; Otten, W.; Schmidt, S.; Glyn Bengough, A.; Shah, N.; Bonell, M. Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology 2016, 9, 585–600. [Google Scholar] [CrossRef]
- Lee, L.M.; Kassim, A.; Gofar, N. Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng. Geol. 2011, 117, 78–89. [Google Scholar] [CrossRef]
- dos Santos, J.S.; de Oliveira, E.; Bruns, R.E.; Gennari, R.F. Evaluation of the salt accumulation process during inundation in water resource of Contas river basin (Bahia–Brazil) applying principal component analysis. Water Res. 2004, 38, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Cadavid, A.C.; Lawrence, J.K.; Ruzmaikin, A. Principal Components and Independent Component Analysis of Solar and Space Data. Sol. Phys. 2008, 248, 247–261. [Google Scholar] [CrossRef]
- Li, T.; Fu, Q.; Xu, S.; Meng, F. Application of Principal Component Analysis in Evaluating Influence Factors of Evaporation in Northern Cold Area. In Proceedings of the 2009 Fifth International Conference on Natural Computation, Tianjin, China, 14–16 August 2009. [Google Scholar]
- Meng, C. Land Surface Modeling with Enhanced Considerations of Soil Evaporation and Coupled Transport of Soil Moisture and Heat. Ph.D. Thesis, Beijing Normal University, Beijing, China, 2006. [Google Scholar]
- Lei, Z.; Yang, S.; Xie, S. Soil moisture movement under evaporation conditions. In Soil Water Dynamics. Part 1. Overview; Tsinghua University Press: Beijing, China, 1988; pp. 132–136. [Google Scholar]
- Li, T. Study on the Moisture Movement Law of Farmland Soil in Northern Seasonal Frozen Soil Area. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2010. [Google Scholar]
- Yao, B.; Li, G.; Wang, F. Effects of winter irrigation and soil surface mulching during freezing-thawing period on soil water-heat-salt for cotton fields in south Xinjiang. Trans. Chin. Soc. Agric. Eng. 2016, 32, 114–119. [Google Scholar]
- Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. 2014, 50, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Agam, N.; Evett, S.R.; Tolk, J.A.; Kustas, W.P.; Colaizzi, P.D.; Alfieri, J.G.; Mckee, L.G.; Copeland, K.S.; Howell, T.A.; Chavez, J.L. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Adv. Water Resour. 2012, 50, 20–30. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.; Van, N.; Thomas, G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
Soil Depth (cm) | Bulk Density (×103 Kg m−3) | Particle Size Distribution | ||
---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | ||
0–30 | 1.41 | 0.82 | 9.07 | 91.22 |
30–60 | 1.41 | 1.27 | 14.84 | 86.61 |
60–80 | 1.41 | 0.88 | 13.46 | 90.55 |
80–100 | 1.41 | 0.41 | 7.06 | 95.57 |
Treatments | E = a + bt | E = aebt | E = atb | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | |
LD | 0.0042 | 0.2459 | 0.98 | 1.6841 | 0.0297 | 0.77 | 0.2245 | 1.0155 | 0.99 |
XS | −0.0522 | 0.2522 | 0.94 | 1.3912 | 0.0320 | 0.79 | 0.1700 | 1.0742 | 0.99 |
CS | −0.0980 | 0.2680 | 0.95 | 1.2462 | 0.0340 | 0.80 | 0.1353 | 1.1380 | 0.99 |
Treatments | P1 | P2 | P3 | ADE |
---|---|---|---|---|
LD | 0.297 | 0.301 | 0.366 | 0.323 |
XS | 0.281 | 0.263 | 0.507 | 0.359 |
CS | 0.270 | 0.268 | 0.485 | 0.349 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Chen, J.; Zheng, X.; Xue, J.; Miao, C.; Du, Q.; Xu, Y. Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period. Water 2018, 10, 536. https://doi.org/10.3390/w10050536
Feng H, Chen J, Zheng X, Xue J, Miao C, Du Q, Xu Y. Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period. Water. 2018; 10(5):536. https://doi.org/10.3390/w10050536
Chicago/Turabian StyleFeng, Huijun, Junfeng Chen, Xiuqing Zheng, Jing Xue, Chunyan Miao, Qi Du, and Yongxin Xu. 2018. "Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period" Water 10, no. 5: 536. https://doi.org/10.3390/w10050536
APA StyleFeng, H., Chen, J., Zheng, X., Xue, J., Miao, C., Du, Q., & Xu, Y. (2018). Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period. Water, 10(5), 536. https://doi.org/10.3390/w10050536