Five-Year Experimental Study on Effectiveness and Sustainability of a Dry Drainage System for Controlling Soil Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Description of the HID and YES
2.2. Observations and Data Collection Design
2.3. Conceptual Model Description
3. Results and Discussion
3.1. Dynamics of GTD and GEC in the DDS
3.2. Inter-Exchanges of Water Transport of the DDS
3.3. Water and Salt Balance
3.4. Effectiveness and Sustainability of a Dry Drainage System
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
EC | electrical conductivity (mS·cm−1) |
GEC | groundwater EC (mS·cm−1) |
TDS | total dissolved solids (g·L−1) |
P | precipitation (mm) |
DDS | dry drainage system |
YES | Yonglian Experimental Station |
HID | Hetao Irrigation District |
ADS | artificial drainage system |
FIP | flowmeter-installed position |
GTD | groundwater table depth |
SSC | soil salt content |
LR | leaching requirement |
References
- Jacobsen, T.; Adams, R.M. Salt and silt in ancient Mesopotamian agriculture. Science 1958, 128, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: The Taiji–Tire model. Hydrol. Earth Syst. Sci. 2014, 18, 1289–1303. [Google Scholar] [CrossRef]
- van Schilfgaarde, J. Irrigation—A blessing or a curse. Agric. Water Manag. 1994, 25, 203–219. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vries, F.; Acquay, H.; Molden, D.; Scherr, S.; Valentin, C.; Cofie, O. Integrated Land and Water Management for Food and Environmental Security; IWMI: Colombo, Sri Lanka, 2003. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agricultural Organization of the United Nations and Earth Scan: Abingdon, UK, 2011. [Google Scholar]
- Konukcu, F.; Gowing, J.W.; Rose, D.A. Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas? Agric. Water Manag. 2006, 83, 1–12. [Google Scholar] [CrossRef]
- Nadeem, A.M. Computer Simulation of Salinity Control by Means of an Evaporative Sink. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK, 1996. [Google Scholar]
- Khouri, N. Potential of dry drainage for controlling soil salinity. Can. J. Civ. Eng. 1998, 25, 195–205. [Google Scholar] [CrossRef]
- Konukcu, F. Potential of dry drainage as a sustainable solution to waterlogging and salinisation. In Biosaline Agriculture and Salinity Tolerance in Plants; Öztürk, M., Waisel, Y., Khan, M.A., Görk, G., Eds.; Birkhäuser Basel: Basel, Switzerland, 2006; pp. 129–135. [Google Scholar]
- Thayalakumaran, T.; Bethune, M.G.; McMahon, T.A. Achieving a salt balance—Should it be a management objective? Agric. Water Manag. 2007, 92, 1–12. [Google Scholar] [CrossRef]
- Datta, K.K.; Jong, C.D. Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agric. Water Manag. 2002, 57, 223–238. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, L.; Huang, J.; Yang, J.; Vincent, B.; Bouarfa, S.; Vidal, A. On the effectiveness of dry drainage in soil salinity control. Sci. China Ser. E Technol. Sci. 2009, 52, 3328–3334. [Google Scholar] [CrossRef]
- Wichelns, D.; Oster, J.D. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric. Water Manag. 2006, 86, 114–127. [Google Scholar] [CrossRef]
- Ayars, J.E.; Shouse, P.; Lesch, S.M. In situ use of groundwater by alfalfa. Agric. Water Manag. 2009, 96, 1579–1586. [Google Scholar] [CrossRef]
- Gowing, J.W.; Wyseure, G.C.L. Dry-drainage a sustainable and cost-effective solution to waterlogging and salinisation. In Proceedings of the 5th International Drainage Workshop, Vol. 3, ICID-CIID, Lahore Pakistan, 8–15 February 1992; pp. 6–26. [Google Scholar]
- Yu, B.; Jiang, L.; Shang, S. Dry drainage effect of Hetao irrigation district based on remote sensing evapotranspiration. Trans. CSAE 2016, 32, 1–8. [Google Scholar]
- Lei, Z.D.; Shang, S.H.; Yang, S.X.; Qu, J.L.; He, C.D.; Zhu, W.D. Preliminary analysis on the dry drainage effect of low-lying lands in Yerqiang Oasis in Xinjiang. J. Irrig. Drain. 1998, 17, 1–4. [Google Scholar]
- Ren, D.; Xu, X.; Ramos, T.B.; Huang, Q.; Huo, Z.; Huang, G. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. J. Hydrol. 2017, 552, 490–504. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, G. Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and tamarisk. Agric. Water Manag. 2018, 199, 93–104. [Google Scholar] [CrossRef]
- Yue, W.; Yang, J.; Tong, J.; Gao, H. Transfer and balance of water and salt in irrigation district of arid region. J. Hydraul. Eng. 2008, 36, 623–626. [Google Scholar]
- Wu, J.; Vincent, B.; Yang, J.; Bouarfa, S.; Vidal, A. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China. Sensors 2008, 8, 7035–7049. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Zeng, W.; Ma, T.; Lei, G.; Zha, Y.; Fang, Y.; Wu, J.; Huang, J. Determination of growth stage-specific crop coefficients (Kc) of sunflowers (Helianthus annuus L.) under salt stress. Water 2017, 9, 215. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, J.; Hoffmann, M.P.; Xu, C.; Ma, T.; Huang, J. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res. 2016, 192, 42–54. [Google Scholar] [CrossRef]
- Burkhalter, J.P.; Gates, T.K. Agroecological impacts from salinization and waterlogging in an irrigated River Valley. J. Irrig. Drain. Eng. 2005, 131, 197–209. [Google Scholar] [CrossRef]
- Yue, W.F. Study on the Mechanism of Consumption in Yichang Irrigation Sub-District of Irrigation District of Inner Mongolia along the Yellow River. Master’s Thesis, Wuhan University, Wuhan, China, 2004. [Google Scholar]
- Wang, L.P.; Chen, Y.X.; Zeng, G.F. Irrigation, Drainage and Salinity Control in Hetao Irrigation District, Inner Mongolia; China Waterpower Press: Beijing, China, 1993; pp. 52–53. [Google Scholar]
- Ren, D.; Xu, X.; Huang, Q.; Huo, Z.; Xiong, Y.; Huang, G. Analyzing the role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions. Water 2018, 10, 634. [Google Scholar] [CrossRef]
- Letey, J. Soil salinity poses challenges for sustainable agriculture and wildlife. Calif. Agric. 2000, 54, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Shen, B.; Wang, Z. Water and salt transport in sand-layered soil underevaporation with the shallow underground water table. Trans. CSAE 2005, 9, 23–26. [Google Scholar]
- Shimojima, E.; Yoshioka, R.; Tamagawa, I. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation. J. Hydrol. 1996, 178, 109–136. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
Location | Soil Profile (cm) | Average | |||||
---|---|---|---|---|---|---|---|
0–10 | 10–30 | 30–50 | 50–70 | 70–100 | 100–140 | ||
Well11 | 0.06 | −0.01 | −0.02 | 0.03 | 0.32 | 0.32 | 0.07 |
Well21 | 0.06 | 0.07 | 0.08 | 0.11 | 0.18 | 0.04 | 0.09 |
Well31 | 0.13 | 0.05 | 0.02 | −0.05 | 0.02 | −0.04 | 0.03 |
Well41 | 0.05 | 0.09 | 0.02 | 0.07 | 0.15 | −0.05 | 0.06 |
Well51 | 0.19 | 0.01 | 0.16 | 0.13 | 0.24 | 0.20 | 0.15 |
Well61 | 0.04 | 0.03 | 0.02 | 0.07 | 0.09 | 0.03 | 0.04 |
Well71 | 0.02 | 0.02 | 0.05 | 0.11 | 0.12 | 0.07 | 0.06 |
Well 82 | −0.44 | −0.28 | −0.06 | 0.10 | 0.06 | 0.06 | −0.09 |
Well 91 | 0.01 | 0.05 | 0.10 | 0.08 | 0.05 | 0.08 | 0.06 |
Well 102 | 0.85 | 0.10 | 0.13 | 0.12 | 0.12 | 0.17 | 0.25 |
Well 112 | 0.01 | 0.17 | 0.03 | 0.08 | 0.12 | 0.13 | 0.09 |
Well 122 | 0.04 | −0.03 | −0.03 | −0.03 | −0.05 | −0.04 | −0.02 |
Location | Year | ΔS (mm) | μΔH (mm) | Ei (mm) | P (mm) | Ddi (mm) | Average (mm) |
---|---|---|---|---|---|---|---|
Well 8 | 2007 | −38 | 119 | 339 | 140 | 280 | 170 |
2008 | −7 | 80 | 431 | 314 | 190 | ||
2009 | −93 | 75 | 261 | 92 | 152 | ||
2010 | −95 | 120 | 319 | 174 | 170 | ||
2011 | −101 | 19 | 216 | 74 | 60 | ||
Well 10 | 2007 | −59 | 122 | 473 | 140 | 396 | 388 |
2008 | 1 | 23 | 752 | 314 | 462 | ||
2009 | −95 | 109 | 634 | 92 | 557 | ||
2010 | −30 | 29 | 433 | 174 | 258 | ||
2011 | −55 | −22 | 419 | 74 | 268 | ||
Well 11 | 2007 | −11 | 43 | 493 | 140 | 385 | 422 |
2008 | −12 | 30 | 751 | 314 | 455 | ||
2009 | −128 | 139 | 625 | 92 | 545 | ||
2010 | −16 | −7 | 545 | 174 | 348 | ||
2011 | −38 | −71 | 563 | 74 | 380 | ||
Well 12 | 2007 | −28 | 25 | 327 | 140 | 184 | 248 |
2008 | 2 | 126 | 459 | 314 | 273 | ||
2009 | −103 | 63 | 349 | 92 | 218 | ||
2010 | −5 | 99 | 340 | 174 | 260 | ||
2011 | −117 | 165 | 330 | 74 | 304 |
Balance Item | 2007 | 2008 | 2009 | 2010 | 2011 | 2007–2011 |
---|---|---|---|---|---|---|
Irrigation (104 m3) | 1320 | 856 | 1382 | 1151 | 1418 | 6127 |
Dry drainage water (104 m3) | 266 | 282 | 296 | 215 | 199 | 1258 |
Artificial drainage water (104 m3) | 73 | 43 | 69 | 30 | 78 | 293 |
Irrigation water salinity (g/L) | 0.54 | 0.51 | 0.47 | 0.64 | 0.54 | |
Groundwater salinity (g/L) | 2.30 | 2.43 | 2.24 | 2.18 | 1.60 | |
Drainage water salinity (g/L) | 1.20 | 1.20 | 1.25 | 1.28 | 1.20 | |
Imported salt with irrigation (ton) | 7128 | 4366 | 6495 | 7367 | 7657 | 33,013 |
Dry drainage salt (ton) | 6118 | 6853 | 6630 | 4687 | 3184 | 27,472 |
Artificial drainage salt (ton) | 876 | 516 | 863 | 384 | 936 | 3575 |
Residual salt in the irrigated area (ton) | 134 | −3003 | −998 | 2296 | 3537 | 1966 |
Residual salt in the irrigated area (kg/ha) | 65 | −1450 | −482 | 1109 | 1708 | 950 |
Residual ratio | 1.9% | −68.8% | −15.4% | 31.2% | 46.2% | −4.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wu, J.; Zeng, W.; Zhu, Y.; Huang, J. Five-Year Experimental Study on Effectiveness and Sustainability of a Dry Drainage System for Controlling Soil Salinity. Water 2019, 11, 111. https://doi.org/10.3390/w11010111
Wang C, Wu J, Zeng W, Zhu Y, Huang J. Five-Year Experimental Study on Effectiveness and Sustainability of a Dry Drainage System for Controlling Soil Salinity. Water. 2019; 11(1):111. https://doi.org/10.3390/w11010111
Chicago/Turabian StyleWang, Changshu, Jingwei Wu, Wenzhi Zeng, Yan Zhu, and Jiesheng Huang. 2019. "Five-Year Experimental Study on Effectiveness and Sustainability of a Dry Drainage System for Controlling Soil Salinity" Water 11, no. 1: 111. https://doi.org/10.3390/w11010111