Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological and Meteorological Data
2.3. Observation Data
2.4. Snow-Cover Data
- (1)
- Images of the Terra and Aqua snow covers were projected and formatted by MODIS Reprojection Tool (MRT);
- (2)
- Images of Terra and Aqua in the same period were synthesized by extracting snow-cover images of the basin and recoding the original classification codes [55];
- (3)
- On the basis of the watershed glacier boundary, the cloud pixels of the glacier areas were identified as snow pixels to obtain the final sequence of the snow image data (Figure 4).
2.5. Statistical Analysis
3. Results
3.1. Variation Characteristics of Climate on North Slope of West Kunlun Mountains
3.2. Variation Characteristics of Snow Cover on North Slope of West Kunlun Mountains
3.3. Runoff Variation Characteristics on North Slope of West Kunlun Mountains
4. Discussion
4.1. Dynamics of Abrupt Change in Runoff Depth
4.2. Climate Change Impact on Runoff Depth
4.3. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Acronyms
Acronym | Full Name |
AWS | Automatic Weather Station |
DEM | Digital Elevation Models |
GLOFs | Glacier Lake Outburst Floods |
HS | Hydrological Station |
KRK | Karakax River Basin |
KRY | Keriya River Basin |
M–K | Mann–Kendall Test |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MOD10A2 | MODIS Product |
MYD10A2 | MODIS Product |
MRT | MODIS Reprojection Tool |
NMS | National Meteorological Station |
NSWKM | North Slope of the West Kunlun Mountains |
SCA | Snow Cover Area |
SCF | Snow cover fraction |
SRTM | Shuttle Radar Topography Mission |
TR | Tarim River |
TP | Tibetan Plateau |
UIB | Upper Indus River Basin |
YRK | Yarkant River Basin |
YUK | Yurungkax River Basin |
References
- Chen, Z.S.; Chen, Y.N. Effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China. Front. Earth Sci. 2014, 8, 309–318. [Google Scholar] [CrossRef]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Sun, C.J.; Yang, J.; Chen, Y.N.; Li, X.G.; Yang, Y.H.; Zhang, Y.Q. Comparative study of streamflow components in two inland rivers in the Tianshan Mountains, Northwest China. Environ. Earth Sci. 2016, 75, 14. [Google Scholar] [CrossRef]
- Chen, Y.N.; Xu, C.C.; Chen, Y.P.; Li, W.H.; Liu, J.S. Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains, China. Quat. Int. 2010, 226, 75–81. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Chen, Z.S.; Li, W.H. Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat. Int. 2012, 282, 87–95. [Google Scholar] [CrossRef]
- Xu, C.C.; Chen, Y.N.; Chen, Y.P.; Zhao, R.F.; Ding, H. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China. Environ. Manag. 2013, 51, 926–938. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Ji, F.; Wu, Z.H.; Huang, J.P.; Chassignet, E.P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Bai, Y.G.; Su, B.D.; Mao, W.Y. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Guo, D.L.; Wang, H.J. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol. 2012, 32, 1775–1781. [Google Scholar] [CrossRef]
- Ye, B.S.; Ding, Y.J.; Liu, F.J.; Liu, C.H. Responses of various-sized alpine glaciers and runoff to climatic change. J. Glaciol. 2003, 49, 1–7. [Google Scholar] [Green Version]
- Wu, H.B.; Wang, N.L.; Guo, Z.M.; Wu, Y.W. Regional glacier mass loss estimated by ICESat-GLAS data and SRTM digital elevation model in the West Kunlun Mountains, Tibetan Plateau, 2003–2009. J. Appl. Remote Sens. 2014, 8, 083515. [Google Scholar] [CrossRef]
- She, J.F.; Zhang, Y.F.; Li, X.G.; Chen, Y.N. Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data. Int. J. Remote Sens. 2014, 35, 234–252. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.Y.; Ding, Y.J.; Ding, L.F.; Xu, J.L.; Jing, L. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci. 2009, 19, 727–732. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Bhardwaj, A.; Sam, L.; Shekhar, M.; Singh, A.; Kumar, R.; Gupta, A. Changing climate and glacio-hydrology in Indian Himalayan Region: A review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 393–410. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Gao, X.; Zhang, X.W.; Hagemann, S. Projection of glacier runoff in Yarkant River basin and Beida River basin, Western China. Hydrol. Process. 2012, 26, 2773–2781. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 2011, 115, 1234–1246. [Google Scholar] [CrossRef]
- Tian, G.L.; Xiao, D.H.; Cai, X.W.; Xing, Y.L.; Wen, L.L.; Zheng, G.G.; Ji, Z.R. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [Google Scholar]
- Xu, C.C.; Chen, Y.N.; Li, W.H.; Chen, Y.P.; Ge, H.T. Potential impact of climate change on snow cover area in the Tarim River basin. Environ. Geol. 2008, 53, 1465–1474. [Google Scholar]
- Kumar, S.V.; Peters-Lidard, C.D.; Arsenault, K.R.; Getirana, A.; Mocko, D.; Liu, Y.Q. Quantifying the Added Value of Snow Cover Area Observations in Passive Microwave Snow Depth Data Assimilation. J. Hydrometeorol. 2015, 16, 1736–1741. [Google Scholar] [CrossRef]
- Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J.L. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Kelly, R.E.J. Scaling-up point snow depth data in the UK for comparison with SSM/I imagery. Int. J. Remote Sens. 1997, 18, 437–443. [Google Scholar] [CrossRef]
- Gusain, H.S.; Mishra, V.D.; Arora, M.K. Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sens. Lett. 2014, 5, 83–92. [Google Scholar] [CrossRef]
- Liu, J.F.; Chen, R.S. Studying the spatiotemporal variation of snow-covered days over China based on combined use of MODIS snow-covered days and in situ observations. Theor. Appl. Climatol. 2011, 106, 355–363. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kaab, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1885–1886. [Google Scholar] [CrossRef]
- Shi, Y.F.; Shen, Y.P.; Kang, E.; Li, D.L.; Ding, Y.J.; Zhang, G.W.; Hu, R.J. Recent and future climate change in northwest China. Clim. Change. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Xu, C.C.; Chen, Y.N.; Yang, Y.H.I.; Hao, X.M.; Shen, Y.P. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 2010, 20, 599–612. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, D.; Luo, Y.Z.; Liu, C.M. Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theor. Appl. Climatol. 2013, 112, 307–316. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Xu, J.H.; Chen, Y.N.; Li, W.H.; Yang, Y.; Hong, Y.L. An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stoch. Environ. Res. Risk Assess. 2011, 25, 223–233. [Google Scholar] [CrossRef]
- Kan, B.Y.; Su, F.G.; Xu, B.Q.; Xie, Y.; Li, J.L.; Zhang, H.B. Generation of High Mountain Precipitation and Temperature Data for Quantitative Assessment of Flow Regime in the Upper Yarkant Basin in the Karakoram. J. Geophys. Res. Atmos. 2018, 123, 8462–8486. [Google Scholar] [CrossRef]
- Clift, P.D.; Zheng, H.B.; Carter, A.; Boning, P.; Jonell, T.N.; Schorr, H.; Shan, X.; Pahnke, K.; Wei, X.C.; Rittenour, T. Controls on erosion in the western Tarim Basin: Implications for the uplift of northwest Tibet and the Pamir. Geosphere 2017, 13, 1747–1765. [Google Scholar] [CrossRef] [Green Version]
- Kaab, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Neckel, N.; Kropacek, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICES at laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Xie, H.J.; Yao, T.D.; Li, H.Y.; Duan, S.Q. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). J. Hydrol. 2014, 519, 976–987. [Google Scholar] [CrossRef]
- Kult, J.; Choi, W.; Keuser, A. Snowmelt runoff modeling: Limitations and potential for mitigating water disputes. J. Hydrol. 2012, 430, 179–181. [Google Scholar] [CrossRef]
- Matte, P.; Tapponnier, P.; Arnaud, N.; Bourjot, L.; Avouac, J.P.; Vidal, P.; Qing, L.; Pan, Y.S.; Yi, W. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 1996, 142, 311–330. [Google Scholar] [CrossRef]
- Sun, C.J.; Li, X.G.; Chen, W.; Chen, Y.N. Climate change and runoff response based on isotope analysis in an arid mountain watershed of the western Kunlun Mountains. Hydrol. Sci. J. 2017, 62, 319–330. [Google Scholar] [CrossRef]
- Zan, J.B.; Fang, X.M.; Yang, S.L.; Nie, J.S.; Li, X.Y. A rock magnetic study of loess from the West Kunlun Mountains. J. Geophys. Res. Solid Earth 2010, 115, 007148. [Google Scholar] [CrossRef]
- Chen, Y.N.; Takeuchi, K.; Xu, C.C.; Chen, Y.P.; Xu, Z.X. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- She, J.F.; Zhang, Y.F.; Li, X.G.; Feng, X.Z. Spatial and Temporal Characteristics of Snow Cover in the Tizinafu Watershed of the Western Kunlun Mountains. Remote Sens. 2015, 7, 3426–3445. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Chen, Y.N.; Li, W.H.; Nie, Q.; Hong, Y.L.; Yang, Y. The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stoch. Environ. Res. Risk Assess. 2013, 27, 389–399. [Google Scholar] [CrossRef]
- Xu, Z.X.; Chen, Y.N.; Li, J.Y. Impact of climate change on water resources in the Tarim River basin. Water Resour. Manag. 2004, 18, 439–458. [Google Scholar] [CrossRef]
- Gottschalk, L.; Tallaksen, L.M.; Perzyna, G. Derivation of low flow distribution functions using recession curves. J. Hydrol. 1997, 194, 239–262. [Google Scholar] [CrossRef]
- Yu, K.X.; Xiong, L.H.; Gottschalk, L. Derivation of low flow distribution functions using copulas. J. Hydrol. 2014, 508, 273–288. [Google Scholar] [CrossRef]
- Zhao, H.L.; Guo, Y.R.; Zhou, R.L.; Drake, S. The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China. Geoderma 2011, 160, 367–372. [Google Scholar] [CrossRef]
- Pu, Z.X.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 029262. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Fan, Y.; Sun, C.; Fang, G. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land 2019, 112, 161–179. [Google Scholar] [CrossRef]
- Yan, W.; Liu, J.S.; Zhang, M.X.; Hu, L.J.; Chen, J.J. Outburst flood forecasting by monitoring glacier-dammed lake using satellite images of Karakoram Mountains, China. Quat. Int. 2017, 453, 24–36. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.J.; Yao, T.D.; Xue, C.S. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 2010, 114, 1662–1675. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Burn, D.H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J. Hydrol. 2008, 352, 225–238. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liu, X.L.; Ren, G.X.; Yang, G.H.; Feng, Y.Z. Analysis of the spatiotemporal variability of droughts and the effects of drought on potato production in northern China. Agric. For. Meteorol. 2019, 264, 334–342. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Tao, H.; Jiang, T.; Chen, Y.D. Climate changes and their impacts on water resources in the arid regions: A case study of the Tarim River basin, China. Stoch. Environ. Res. Risk Assess. 2010, 24, 349–358. [Google Scholar] [CrossRef]
- Beyers, J.H.M.; Sundsbo, P.A.; Harms, T.M. Numerical simulation of three-dimensional, transient snow drifting around a cube. J. Wind Eng. Ind. Aerodyn. 2004, 92, 725–747. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Chipman, J.W.; Shi, X.; Chen, Z.S. Why does the runoff in Hotan River show a slight decreased trend in northwestern China? Atmos. Sci. Lett. 2018, 19, e800. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.W.; Ling, H.B.; Xu, H.L.; Guo, B. Study of suitable oasis scales based on water resource availability in an arid region of China: A case study of Hotan River Basin. Environ. Earth Sci. 2016, 75, 984. [Google Scholar] [CrossRef]
- Gao, T.G.; Zhang, T.J.; Cao, L.; Kang, S.C.; Sillanpaa, M. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Reg. Sci. Tech. 2016, 126, 36–43. [Google Scholar] [CrossRef]
- Liu, J.S.; Wang, S.Y.; Huang, Y.Y. Effect of climate change on runoff in a basin with mountain permafrost, northwest China. Permafr. Periglac. Process. 2007, 18, 369–377. [Google Scholar] [CrossRef]
- Ling, H.B.; Zhang, Q.Q.; Shi, W.; Xu, H.L. Runoff variation law and its response to climate change in the headstream area of the Keriya River basin, Xinjiang. J. Earth Sci. 2011, 22, 780–791. [Google Scholar] [CrossRef]
- Ling, H.B.; Xu, H.L.; Fu, J.Y. High- and low-flow variations in annual runoff and their response to climate change in the headstreams of the Tarim River, Xinjiang, China. Hydrol. Process. 2013, 27, 975–988. [Google Scholar] [CrossRef]
- Fujita, K.; Ohta, T.; Ageta, Y. Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrol. Process. 2007, 21, 2882–2891. [Google Scholar] [CrossRef]
- Yuan, Z.D.; Chen, J.; Owen, L.A.; Hedrick, K.A.; Caffee, M.W.; Li, W.Q.; Schoenbohm, L.M.; Robinson, A.C. Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology 2013, 182, 49–65. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Kumar, R.; Singh, A.; Bhardwaj, A.; Sam, L.; Randhawa, S.S.; Gupta, A. Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. Water Resour. Manag. 2016, 30, 3475–3492. [Google Scholar] [CrossRef]
- Zhao, B.F.; Xu, J.H.; Chen, Z.S.; Bai, L.; Li, P. Air Temperature Change in the Southern Tarim River Basin, China, 1964–2011. Sci. World J. 2013, 2013, 894851. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Kang, S.C.; Chen, F.; Joswiak, D.R. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J. Hydrol. 2013, 491, 89–99. [Google Scholar] [CrossRef]
Basin | Station | Type | Longitude (°) | Latitude (°) | Elevation (m) | Basin Area (km2) | Glacier Area (km2) |
---|---|---|---|---|---|---|---|
YRK | Kaqun | HS | 37.98 | 76.90 | 1370 | 46,635 | 5145 |
Kulukelangan | HS | 37.73 | 76.22 | 2000 | 29,397 | 4462 | |
Tashkurgan | NMS | 37.77 | 75.23 | 3090 | |||
Shenxianwan | AWS | 35.63 | 77.68 | 4953 | |||
Shache | NMS | 38.43 | 77.27 | 1231 | |||
KRK | Kala | AWS | 36.42 | 77.72 | 4482 | ||
Wuluwati | HS | 36.87 | 79.43 | 1850 | 19,891 | 1920 | |
Pishan | NMS | 37.62 | 78.28 | 1375 | |||
Tuoman | NMS | 37.03 | 78.88 | 2145 | 18,119 | 1919 | |
YUK | Yurung | AWS | 36.25 | 79.80 | 3670 | ||
Tongguziluoke | HS | 36.82 | 79.92 | 1650 | 14,820 | 2921 | |
Hotan | NWS | 37.13 | 79.93 | 1375 | |||
Heishan | NWS | 36.25 | 79.77 | 2460 | 10,948 | 2877 | |
KRY | Yutian | NWS | 36.85 | 81.65 | 1422 | ||
Keriya | HS | 36.47 | 81.47 | 1880 | 8312 | 682 |
Date | OCC | Two-Satellite Synthesis | Entrance-Glacier Boundary | FR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TECP | CC | OE | UE | TECP | CC | OE | UE | |||
2005145 | 43.07 | 42.49 | 39.05 | 0.39 | 3.05 | 28.85 | 28.84 | 0.01 | 0.00 | 71.34 |
2008097 | 34.98 | 33.41 | 29.17 | 0.70 | 3.54 | 37.22 | 37.10 | 0.12 | 0.00 | 70.63 |
2009129 | 35.60 | 61.45 | 55.32 | 2.26 | 3.87 | 25.80 | 25.76 | 0.03 | 0.00 | 87.25 |
2010129 | 36.22 | 56.58 | 50.68 | 0.23 | 5.67 | 23.96 | 23.92 | 0.04 | 0.00 | 80.54 |
2011089 | 34.10 | 49.14 | 46.12 | 0.85 | 2.17 | 27.27 | 27.24 | 0.02 | 0.00 | 76.41 |
Mean | 48.61 | 44.07 | 0.89 | 3.66 | 28.62 | 28.57 | 0.04 | 0.00 | 77.23 |
Basin | Monthly Mean Minimum Runoff | Monthly Mean Maximum Runoff | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Nov | Dec | Jun | Jul | Aug | |
YRK | 7.9 | 19.0 | 30.2 | 38.1 | 3.2 | 0.0 | 1.6 | 0.0 | 34.4 | 65.6 |
KRK | 67.7 | 21.0 | 1.6 | 0.0 | 0.0 | 0.0 | 9.7 | 1.6 | 62.3 | 36.1 |
YUK | 29.5 | 36.1 | 19.7 | 0.0 | 0.0 | 0.0 | 14.8 | 0.0 | 45.9 | 54.1 |
KRY | 23.0 | 26.2 | 14.8 | 0.0 | 0.0 | 1.6 | 34.4 | 0.0 | 54.1 | 45.9 |
Basin/Correlation Coefficient | R-T | R-T|P | R-P | R-P|T | T-P |
---|---|---|---|---|---|
YRK | 0.360 * | 0.356 * | −0.063 | −0.023 | −0.156 |
KRK | −0.116 | −0.207 | −0.367 * | −0.400 ** | −0.198 |
YUK | 0.110 | 0.107 | 0.067 | 0.063 | 0.046 |
KRY | 0.250 | 0.277 * | 0.411 *** | 0.426 *** | −0.006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yan, W.; Zhao, C.; Kundzewicz, Z.W. Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains. Water 2019, 11, 2246. https://doi.org/10.3390/w11112246
Ma X, Yan W, Zhao C, Kundzewicz ZW. Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains. Water. 2019; 11(11):2246. https://doi.org/10.3390/w11112246
Chicago/Turabian StyleMa, Xiaofei, Wei Yan, Chengyi Zhao, and Zbigniew W. Kundzewicz. 2019. "Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains" Water 11, no. 11: 2246. https://doi.org/10.3390/w11112246
APA StyleMa, X., Yan, W., Zhao, C., & Kundzewicz, Z. W. (2019). Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains. Water, 11(11), 2246. https://doi.org/10.3390/w11112246