Revisiting Telemetry in Pakistan’s Indus Basin Irrigation System
Abstract
:1. Introduction
- 1.
- “A rigorous, calibrated system for measuring water inflows, storages, and outflows be put in place.
- 2.
- The measurement system be audited by a party which is not only scrupulously independent and impartial but is seen to be so by all parties.
- 3.
- Reporting must be totally transparent and available in real time for all parties to scrutinize.”
2. Materials and Methods
2.1. The Study Area
2.2. The Instruments and Data
2.2.1. Data Sampling Period
2.2.2. Data Logging Period
2.2.3. Data Transmission Period
2.3. Calibration and External Parameters
2.4. Data Post-Processing Delay
2.5. Quality Assurance of Data
2.5.1. Data Integrity
2.5.2. Data Accuracy
- Calibration problems, which deal with establishing a relationship between a new system and an existing one that can be used to appropriately adjust the new system’s measurements;
- Comparison problems, which deal with assessing the level of agreement between two measurement systems whose measurements are on the same scale;
- Conversion problems, which deal with the comparison of two systems whose measurements are on different scales; and
- Gold-standard comparison problems, which deal with the comparison of a new measurement system with a system that is known to make measurements without error.
2.5.3. Measurement of External Parameters
3. Results and Discussion
3.1. Data Integrity
3.2. Data Timeliness
3.3. Data Accuracy
3.4. External Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
Δ | data processing delay |
B | width of canal |
C | rating curve coefficient |
H | depth-of-flow |
i | index, 0,1,2,… |
latency | |
NS | sample size aggregated at the data logging period |
nr | roughness coefficient |
n | number of non-missing data points |
Q | discharge, determined empirically |
S | bed slope of canal |
TD | data logging period |
TS | data sampling period |
TT | data transmission period |
xi | actual data |
yi | estimated or forecasted data |
|| | absolute values. |
Appendix A
Sr # | Component Description | Manufacturer | Model # |
---|---|---|---|
1 | Data Logger | Campbell Scientific | CR 800 |
2 | Range Finder | APG | IRU-6429 |
3 | Modem | Sierra Wireless | LS 300 |
4 | Rechargeable Battery 12 V | Any Manufacturer | 12V |
5 | Solar Panel 10 W | Campbell Scientific | SP-10 |
6 | Charging Regulator 12 V | Campbell Scientific | CH-200 |
7 | Pressure Transducer | Eijkelkamp Soil & Water | CTD-Diver |
8 | Omni Cellular Antenna 800 MHZ | Campbell Scientific | 1 db |
9 | Allied Cables, Mountings, Surge Suppressors | Campbell Scientific |
References
- GoP. Provisional Summary Results of 6th Population and Housing Census-2017; Government of Pakistan, Pakistan Bureau of Statistics, Ministry of Statistics: Islamabad, Pakistan, 2017. Available online: http://www.pbs.gov.pk/content/provisional-summary-results-6th-population-and-housing-census-2017-0 (accessed on 14 May 2019).
- GoP. Pakistan Economic Survey 2018-19; Government of Pakistan, Ministry of Finance: Islamabad, Pakistan, 2018. Available online: http://www.finance.gov.pk (accessed on 11 June 2019).
- Yong, W.J.; Anwar, A.; Bhatti, T.; Borgomeo, E.; Davies, S.; Garthwaite, W.R., III; Gilmont, M.; Leb, C.; Lytton, L.; Makin, I.W.; et al. Pakistan: Getting more from Water; The World Bank: Washington, DC, USA, 2019; Available online: http://documents.worldbank.org/curated/en/251191548275645649/Pakistan-Getting-More-from-Water (accessed on 14 May 2019).
- Condon, M.; Kriens, D.; Lohani, A.; Sattar, E. Challenge and response in the Indus Basin. Water Policy 2014, 16, 58. [Google Scholar] [CrossRef]
- IRSA. Apportionment of Waters of Indus River System between the Provinces of Pakistan. 2016. Available online: http://pakirsa.gov.pk/irsapublic/LegalProceedings.aspx (accessed on 9 September 2016).
- FODP. A Productive and Water Secure Pakistan: A report of of the Water Sector Task Force of the Friends of Democratic Pakistan. 2012. Available online: http://metameta.nl/wp-content/uploads/2013/11/FoDP-WSTF-Report-Final-09-29-12.pdf (accessed on 12 December 2016).
- Bhatti, M.; Farooq, M. Politics of Water in Pakistan. Pak. J. Soc. Sci. PJSS 2014, 34, 205–216. [Google Scholar]
- Mustafa, D. Hydropolitics in Pakistan’s Indus Basin; United States Institute of Peace: Washington, DC, USA, 2010. [Google Scholar]
- The News. IRSA Refuses to Take over Telemetry System from WAPDA. Available online: https://www.thenews.com.pk/print/104901-Irsa-refuses-to-take-over-telemetry-system-from-Wapda (accessed on 22 November 2016).
- Dawn. IRSA Refuses to Run Telemetry System. Available online: http://www.dawn.com/news/105151/irsa-refuses-to-run-telemetry-system (accessed on 22 November 2016).
- Briscoe, J.; Qamar, U. Pakistan’s Water Economy: Running Dry; Oxford University Press: Karachi, Pakistan, 2006. [Google Scholar]
- IUCN. Pakistan Water Apportionment Accord for Resolving Inter-Provincial Water Conflicts—Policy Issues and Options; IUCN: Islamabad, Pakistan, 2010; Available online: https://cmsdata.iucn.org/downloads/pk_ulr_d4.pdf (accessed on 22 December 2016).
- PILDAT. Inter-Provincial Water Issues in Pakistan: Final Recommendations Report; Pakistan Institute of Legislative Development and Transparency: Islamabad, Pakistan. Available online: http://www.pildat.org/Publications/publication/Publications.asp (accessed on 17 August 2016).
- Khan, A.H. Water sharing dispute in Pakistan: Standpoint of provinces. Berkeley J. Soc. Sci. 2014, 4, 1–17. [Google Scholar]
- GoP. National Water Policy, Government of Pakistan; Ministry of Water Resources: Islamabad, Pakistan, 2018. Available online: https://mowr.gov.pk/index.php/national-water-policy-2018/ (accessed on 14 May 2019).
- Anwar, A.A.; Bhatti, M.T. Pakistan’s Water Apportionment Accord of 1991: 25 years and beyond. J. Water Resour. Plan. Manag. 2018, 144, 1–13. [Google Scholar] [CrossRef]
- OECD. Meeting the Challenge of Financing Water and Sanitation: Tools and Approaches, OECD Studies on Water; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- OECD. OECD-Principles-on-Water-Governance. 2015. Available online: https://www.oecd.org/cfe/regional-policy/OECD-Principles-on-Water-Governance.pdf (accessed on 23 December 2016).
- Akhmouch, A.; Correia, F.N. The 12 OECD principles on water governance—When science meets policy. Util. Policy 2016, 43, 14–20. [Google Scholar] [CrossRef]
- World Bank. Project Appraisal Document; 2016; Available online: http://projects.worldbank.org/P110099/water-sector-capacity-buildling-advisory-services-project-wcap?lang=en&tab=overview (accessed on 23 November 2016).
- World Bank. Implementation Completion and Results Report on the project Restructuring of Punjab Barrages Improvement Phase II Project. 2018. Available online: http://documents.worldbank.org/curated/en/203351525040994680/pdf/Pakistan-PK-Punjab-Barrages-Improvement-II-Proj.pdf (accessed on 14 May 2019).
- World Bank. Balochistan Integrated Water Resources Management and Development—Project Appraisal Document. 2016. Available online: http://projects.worldbank.org/P154255/?lang=en&tab=documents&subTab=projectDocuments (accessed on 12 December 2016).
- Jatmiko, S.; Mutiara, A.B.; Indriati, M. Prototype of water level detection system with wireless. J. Theor. Appl. Inf. Technol. 2012, 37. No.1. [Google Scholar]
- Mueller, D.S.; Wagner, C.R.; Rehmel, M.S.; Oberg, K.A.; Rainville, F. Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat; U.S. Department of the Interior: Anchorage, AK, USA; U.S. Geological Survey: Reston, VA, USA, 2009. [CrossRef]
- Rehmel, M.S. Michael application of acoustic doppler velocimeters for streamflow measurements. J. Hydraul. Eng. 2007, 133, 1433–1438. [Google Scholar] [CrossRef]
- Nord, G.; Gallart, F.; Gratiot, N.; Soler, M.; Reid, I.; Vachtman, D.; Latron, J.; Martín-Vide, J.P.; Laronne, J.B. Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport. J. Hydrol. 2014, 509, 504–518. [Google Scholar] [CrossRef]
- McVay, J.C. Evaluation of the Ott Hydromet Qliner for Measuring Discharge in Laboratory and Field Conditions; U.S. Geological Survey: Reston, VA, USA, 2015. [CrossRef]
- Dontha, R. Data Quality—A Simple Six Step Process. 2017. Available online: https://www.dataversity.net/data-quality-simple-6-step-process/ (accessed on 16 May 2019).
- Dawn. Ownership Dispute of Telemetry System. Available online: https://www.dawn.com/news/186000 (accessed on 6 October 2019).
- Business Recorder. Consultant to be Engaged to Report on Telemetry System Working: Panel Set Up to Spell TORs. Available online: https://fp.brecorder.com/2006/11/20061129502246/ (accessed on 6 October 2019).
- Kloiber, S.M.; Macleod, R.D.; Wang, G. Wetland and Stream Rapid Assessments; Dorney, J., Savage, R., Tiner, R.W., Adams, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 91–103. [Google Scholar]
- Satake, E.B. Statistical Methods and Reasoning for the Clinical Sciences Evidence-Based Practice; Plural Publishing Inc.: San Diego, CA, USA, 2015; pp. 1–19. [Google Scholar]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Applying the right statistics: Analyses of measurement studies: Measurement studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Stevens, N.T.; Steiner, S.H.; MacKay, R.J. Assessing agreement between two measurement systems: An alternative to the limits of agreement approach. Stat. Methods Med. Res. 2015, 26, 2487–2504. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G. Statistical Evaluation of Measurement Errors: Design and Analysis of Reliability Studies, 2nd ed.; Hodder Education Publishers: London, UK, 2004. [Google Scholar]
- Kolassa, S.; Martin, R. Percentage Errors Can Ruin Your Day (and Rolling the Dice Shows How). Int. J. Appl. Forecast. 2011, 23, 21–27. [Google Scholar]
- Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons. Int. J. Forecast. 1992, 8, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, S.G.; Hibon, M. Evaluating Accuracy (or Error) Measures; Volume 9518 of Working Papers; INSEAD: Fontainebleau, France, 1995. [Google Scholar]
- Armstrong, J.S. Long Range Forecasting: From Crystal Ball to Computer, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1986; ISBN 978-0-471-82260-8. [Google Scholar]
- Flores, B.E. A pragmatic view of accuracy measurement in forecasting. Omega 1986, 14, 93–98. [Google Scholar] [CrossRef]
- Shah, M.A.A.; Anwar, A.A.; Bell, A.R.; ul Haq, Z. Equity in a tertiary canal of the Indus Basin Irrigation System (IBIS). Agric. Water Manag. 2016, 178, 201–214. [Google Scholar] [CrossRef]
- Anwar, A.A.; Bhatti, M.T.; de Vries, T.T. Canal Operations Planner. I: Maximizing Delivery Performance Ratio. J. Irrig. Drain. Eng. 2016, 4016057. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Anwar, A.A.; Aslam, M. Groundwater monitoring and management: Status and options in Pakistan. Comput. Electron. Agric. 2017, 135, 143–153. [Google Scholar] [CrossRef]
- O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; Altman, D.G.; Bland, M.; Coats, A.; Atkins, N. The British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 1993, 11 (Suppl. 2), S43–S62. [Google Scholar]
Feature | Unit | Lower Bari Doab Canal | Upper Swat Canal | Kirther Canal | Pat Feeder Canal |
---|---|---|---|---|---|
River (Barrage/Headworks) | Ravi (Balloki) | Swat (Amandara) | Indus (Sukkur) | Indus (Guddu) | |
Running distance | km | 8.99 | 5.94 | 35.35 | 33.22 |
Discharge Estimation | Flume | Crump Weir | Rating Curve | Rating Curve | |
Capacity at head | m3 s−1 ft3 s−1 | 263.12 (9292) | 101.94 (3600) | 67.96 (2400) | 189.72 (6700) |
Geographic coverage | Province(s) | Punjab | Khyber Pakhtunkhwa | Sindh-Balochistan | Sindh-Balochistan |
Proportion of total provincial water share | % | 8.8 | 27.7 | 22.1 * | 49.7 * |
Length | (km) | 201 | 129 | 84 | 171 |
Irrigated area | (ha) | 687,967 | 111,740 | 107,647 | 205,753 |
Canals | Lower Bari Doab Canal | Kirther Canal | Pat Feeder Canal | Upper Swat Canal | |
---|---|---|---|---|---|
Reporting period during 2018 | 31 May to 10 Dec | 15 Aug to 10 Dec | 07 Sept to 10 Dec | 09 July to 10 Dec | |
Average Latency per day | hr | 17.10 | 13.33 | 8.09 | 8.37 |
Data records received | # | 17,057 | 11,296 | 8818 | 29,281 |
Max possible records | # | 18,528 | 11,328 | 8832 | 29,952 |
Data Integrity | % | 92.1 | 99.7 | 99.8 | 97.8 |
Normality Test | N | α | t-stat | t-crit | p-value | Decision Rule | |
---|---|---|---|---|---|---|---|
t-stat > t-crit | p-value < α | ||||||
Kolmogorov–Smirnov | 2817 | 0.05 | 0.5139 | 0.0256 | Reject Ho | ||
Anderson–Darling | 2817 | 0.05 | 6.3903 | 0.7518 | 0.0000 | Reject Ho | Reject Ho |
Jacque–Bera | 2817 | 0.05 | 22.9684 | 5.9915 | 0.0000 | Reject Ho | Reject Ho |
Cramer–von Mises | 2817 | 0.05 | 4.5720 | 0.2200 | Reject Ho |
Grade | Proportion (in Percent) of d-b-m * within the Reference Values | ||
---|---|---|---|
±1 cm | ±2 cm | ±3 cm | |
A | 60 | 85 | 95 |
B | 50 | 75 | 90 |
C | 40 | 65 | 85 |
D | fails to achieve C | ||
Observed proportion and corresponding grade achieved | |||
33.5 D | 69.9 B | 96.3 A |
Number of Readings | n | 2817 | |
---|---|---|---|
Mean Absolute Difference | MAD | % | 1.477 |
Mean Standard Error | MSE | % | 2.961 |
Root-Mean-Squared Error | RMSE | % | 1.721 |
Mean Absolute Percentage Error | MAPE | % | 0.97 |
Symmetric Mean Absolute Percent Error | sMAPE (Armstrong) | % | 0.96 |
sMAPE (Flores) | % | 0.48 |
Canal Name | Date of Record | Av Bed Elev. (m) | Rating Eq Coeff. (m4/3s−1) | Elapsed Months | % Change Av Bed Elev. | % Change Coeff. C |
---|---|---|---|---|---|---|
Baku Shah | 18 Mar 2014 | 163.44 | 0.255 | Baseline | ||
4 Nov 2014 | 163.44 | 0.178 | 7.71 | 0.00% | −30.18% | |
1 Feb 2015 | 163.60 | 0.178 | 10.67 | 0.10% | −30.18% | |
11 Jun 2015 | 163.60 | 0.202 | 15.00 | 0.10% | −21.09% | |
7 Dec 2015 | 163.60 | 0.109 | 20.97 | 0.10% | −57.45% | |
Bhagsen | 18 Mar 2014 | 157.16 | 0.643 | Baseline | ||
3 Nov 2014 | 157.16 | 0.511 | 7.67 | 0.00% | −20.52% | |
14 Mar 2015 | 157.21 | 0.511 | 12.04 | 0.03% | −20.52% | |
11 Jun 2015 | 157.21 | 0.603 | 15.00 | 0.03% | −6.21% | |
7 Dec 2015 | 157.21 | 0.562 | 20.97 | 0.03% | −12.57% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, M.T.; Anwar, A.A.; Shah, M.A.A. Revisiting Telemetry in Pakistan’s Indus Basin Irrigation System. Water 2019, 11, 2315. https://doi.org/10.3390/w11112315
Bhatti MT, Anwar AA, Shah MAA. Revisiting Telemetry in Pakistan’s Indus Basin Irrigation System. Water. 2019; 11(11):2315. https://doi.org/10.3390/w11112315
Chicago/Turabian StyleBhatti, Muhammad Tousif, Arif A. Anwar, and Muhammad Azeem Ali Shah. 2019. "Revisiting Telemetry in Pakistan’s Indus Basin Irrigation System" Water 11, no. 11: 2315. https://doi.org/10.3390/w11112315
APA StyleBhatti, M. T., Anwar, A. A., & Shah, M. A. A. (2019). Revisiting Telemetry in Pakistan’s Indus Basin Irrigation System. Water, 11(11), 2315. https://doi.org/10.3390/w11112315