Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information on the Farm
2.2. The Water Footprint Network Methodology
2.2.1. The Water Footprint of Eggs
2.2.2. Environmental Sustainability of the Water Footprint
2.3. Data Collection
2.3.1. Basic Data of the Farm
2.3.2. Feed Intake
2.3.3. Egg Production
2.3.4. Water Consumption
3. Results
3.1. The Green, Blue and Grey Water of Eggs
3.1.1. Green Water
3.1.2. Blue Water
3.1.3. Grey Water
3.2. The Total Water Use of Eggs
3.3. Water Use of Two Species of Laying Hens
3.4. Sustainability of the Water Footprint of Eggs
4. Comparative Analysis between the Results and the Research Efforts around the World
4.1. The Water Footprint of Eggs
4.1.1. The Green Water Footprint of Eggs
4.1.2. The Blue Water Footprint of Eggs
4.1.3. The Grey Water Footprint of Eggs
4.2. Limitations of the Water Footprint Indicators
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow-Environmental Issues and Options; FAO Agriculture Technical Paper; FAO: Rome, Italy, 2015. [Google Scholar]
- Mekonnen, M.M.; Neale, C.M.U.; Ray, C.; Erickson, G.E.; Hoekstra, A.Y. Water productivity in meat and milk production in the US from 1960 to 2016. Environ. Int. 2019, 132, 105084. [Google Scholar] [CrossRef] [PubMed]
- Gerbens-Leenes, P.W.; Nonhebel, S.; Krol, M.S. Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 2010, 55, 597–608. [Google Scholar] [CrossRef]
- Liu, J.; Savenije, H.H.G. Food consumption patterns and their effect on water requirement in China. Hydrol. Earth Syst. Sci. 2008, 12, 887–898. [Google Scholar] [CrossRef]
- Cai, B.M.; Liu, B.B.; Zhang, B. Evolution of Chinese urban household’s water footprint. J. Clean. Prod. 2019, 208, 1–10. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; Value of Water Research Report Series No 11; UNESCO-IHE: Delft, The Netherlands, 2002. [Google Scholar]
- Murphy, E.; de Boer, I.J.M.; van Middelaar, C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J. Water footprinting of dairy farming in Ireland. J. Clean. Prod. 2017, 140, 547–555. [Google Scholar] [CrossRef]
- Munro, S.A.; Fraser, G.C.G.; Snowball, J.D.; Pahlow, M. Water footprint assessment of citrus production in South Africa: A case study of the Lower Sundays River Valley. J. Clean. Prod. 2016, 135, 668–678. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar]
- De Miguel, Á.; Hoekstra, A.Y.; García-Calvo, E. Sustainability of the water footprint of the Spanish pork industry. Ecol. Indic. 2015, 57, 465–474. [Google Scholar] [CrossRef]
- Bai, X.; Ren, X.; Khanna, N.Z.; Zhang, G.; Zhou, N.; Bai, Y.; Hu, M. A comparative study of a full value-chain water footprint assessment using two international standards at a large-scale hog farm in China. J. Clean. Prod. 2018, 176, 557–565. [Google Scholar] [CrossRef]
- Noya, I.; Gonzalez-Garcia, S.; Berzosa, J.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental and water sustainability of milk production in Northeast Spain. Sci. Total Environ. 2018, 616–617, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Payen, S.; Ledgard, S.; Luo, J.; Ma, L.; Zhang, X. Components of feed affecting water footprint of feedlot dairy farm systems in Northern China. J. Clean. Prod. 2018, 183, 208–219. [Google Scholar] [CrossRef]
- Ibidhi, R.; Ben Salem, H. Water footprint assessment of sheep farming systems based on farm survey data. Animal 2019, 13, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Ibidhi, R.; Frija, A.; Jaouad, M.; Ben Salem, H. Typology analysis of sheep production, feeding systems and farmers strategies for livestock watering in Tunisia. Small Rumin. Res. 2018, 160, 44–53. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water for animal products: A blind spot in water policy. Environ. Res. Lett. 2014, 9, 091003. [Google Scholar] [CrossRef]
- FAO. FAOSTAT On-Line Database. Available online: http://faostat.fao.org (accessed on 15 November 2019).
- FAO. FAO Statistical Yearbook: World Food and Agriculture; FAO: Rome, Italy, 2013. [Google Scholar]
- Dong, H.J.; Geng, Y.; Fujita, T.; Fujii, M.; Hao, D.; Yu, X.M. Uncovering regional disparity of China’s water footprint and inter-provincial virtual water flows. Sci. Total Environ. 2014, 500, 120–130. [Google Scholar] [CrossRef]
- Chu, C.; Ritter, W.; Sun, X.H. Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence. Energy Policy 2019, 125, 487–502. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; Aguilar, C.; Vera, R.; Cornejo, K. A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment. Agric. Syst. 2016, 148, 75–85. [Google Scholar] [CrossRef]
- Duan, P.L.; Qin, L.J.; Wang, Y.Q.; He, H.S. Spatial pattern characteristics of water footprint for maize production in Northeast China. J. Sci. Food Agric. 2016, 96, 561–568. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Brown, H.-L. Hy-Line Brown Parent Stock Management Guides. Available online: https://www.hyline.com/userdocs/pages/BRN_PS_ENG.pdf (accessed on 16 January 2019).
- Sonia, H.-L. Hy-Line Sonia Parent Stock Management Guides. Available online: https://www.hyline.com/userdocs/pages/SO_PS_ENG.pdf (accessed on 16 January 2019).
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2004. [Google Scholar]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef] [Green Version]
A | B | C | D | E | F | G | ||
---|---|---|---|---|---|---|---|---|
Hy-line Brown | Hy-line Sonia | |||||||
Hen number | 27,900 | 27,900 | 20,705 | 27,920 | 27,907 | 22,875 | 27,979 | |
Male number | 3890 | 3811 | 3156 | 3957 | 3845 | 3016 | 3802 | |
Sex ratio | Male:female = 1:10 | |||||||
Beginning day old (days) | 110 | 108 | 106 | 103 | 98 | 91 | 85 | |
Laying period (days) | 352 | |||||||
Egg production (unit) | 6,767,230 | 6,459,150 | 6,302,051 | 6,141,363 | 6,189,844 | 6,306,205 | 6,055,326 |
Component | %(w/w) |
---|---|
Maize | 62 |
Soybeans | 24.8 |
Additives | 13.2 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Hy-line Brown | Hy-line Sonia | ||||||
Green water | |||||||
Maize (kg) | 680,743 | 652,381 | 661,004 | 643,346 | 652,386 | 667,249 | 659,575 |
Soybean (kg) | 272,080 | 260,745 | 264,191 | 257,133 | 260,747 | 266,687 | 263,620 |
Green WF (m3/kg) | 1.917 | 1.921 | 2.015 | 2.034 | 2.048 | 2.075 | 2.114 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Hy-line Brown | Hy-line Sonia | ||||||
Production area (t) | 1810 | 1774 | 1777 | 1778 | 1794 | 1773 | 1770 |
Living area (t) | 1274 | ||||||
Irrigation (t) | 251,785 | 241,294 | 237,953 | 244,484 | 241,296 | 246,794 | 243,955 |
Blue WF (m3/kg) | 0.584 | 0.586 | 0.614 | 0.619 | 0.624 | 0.632 | 0.644 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Hy-line Brown | Hy-line Sonia | ||||||
Maize (t) | 171,384 | 164,243 | 161,969 | 166,414 | 164,245 | 167,987 | 166,054 |
Soybean (t) | 40,853 | 39,151 | 38,609 | 38,609 | 39,151 | 40,043 | 39,583 |
Grey WF (m3/kg) | 0.488 | 0.489 | 0.513 | 0.517 | 0.522 | 0.528 | 0.538 |
Total WF (m3/kg) | 2.989 | 2.996 | 3.142 | 3.171 | 3.193 | 3.236 | 3.296 |
Green Water Scarcity | Blue Water Scarcity | Water Resource per Capita in Jilin (m3) | Water Resource per Capita in Hebei (m3) |
---|---|---|---|
69.0% | 111.1% | 1447.33 | 184.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Zheng, W.; Li, B.; Liu, Z.; Zhang, Y. Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. Water 2019, 11, 2546. https://doi.org/10.3390/w11122546
Xing H, Zheng W, Li B, Liu Z, Zhang Y. Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. Water. 2019; 11(12):2546. https://doi.org/10.3390/w11122546
Chicago/Turabian StyleXing, Haohan, Weichao Zheng, Baoming Li, Zhidan Liu, and Yuanhui Zhang. 2019. "Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm" Water 11, no. 12: 2546. https://doi.org/10.3390/w11122546
APA StyleXing, H., Zheng, W., Li, B., Liu, Z., & Zhang, Y. (2019). Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. Water, 11(12), 2546. https://doi.org/10.3390/w11122546