Runoff and Solute Outputs under Different Land Uses: Long-Term Results from a Mediterranean Mountain Experimental Station
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Aísa Valley Experimental Station (1991–2011)
2.2. Statistical Analysis
3. Results
3.1. Soil Properties and Land Cover Evolution
3.2. Runoff and Suspended Sediment Concentration Updating
3.3. Solute Water Chemistry and Total Sediment Production
- (i)
- The lowest solute concentration values were recorded in the grazing meadow (115.6 mg L−1) and dense shrub cover (118.1 mg L−1) plots, where agricultural activity was absent during all the study period and a dense plant cover was recorded. Mid-range values were obtained in the abandoned cereal field (133.1 mg L−1) and the two burned plots (1 and 2) (130.6 and 136.2 mg L−1, respectively).
- (ii)
- The highest values were recorded in the cereal plot (192.6 mg L−1), fallow (196.1 mg L−1) and shifting agriculture (active and abandoned) (159.7 and 181.9 mg L−1 respectively), where chemical fertilizer or ash were added.
4. Discussion
Implications for Land Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world-water towers for humanity: Typology, mapping and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef]
- De Jong, C.; Lawler, D.; Essery, R. Mountain hydroclimatology and snow seasonality and hydrological change in mountain environments. Hydrol. Process 2009, 23, 955–961. [Google Scholar] [CrossRef]
- Kilic, S.; Evrendilek, F.; Berberoglu, S.; Demirkesen, A.C. Environmental monitoring of land-use and land-cover changes in a Mediterranean Region of Turkey. Environ. Monit. Assess. 2006, 114, 157–168. [Google Scholar] [CrossRef]
- Rico-Amorós, A.M.; Olcina-Cantos, J.; Saurí, D. Tourist land use patterns and water demand: Evidence from the Western Mediterranean. Land Use Pol. 2009, 26, 493–501. [Google Scholar] [CrossRef]
- Jlassi, W.; Nadal-Romero, E.; García-Ruiz, J.M. Modernization of new irrigated lands in a scenario of increasing water scarcity: From large reservoirs to small ponds. Cuad. Investig. Geogr. 2016, 42, 233–259. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta, T.; Beguería, S. Mediterranean water resources in a global change. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- López-Moreno, J.I. Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct. Antarct. Alp. Res. 2005, 37, 253–260. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Lasanta, T.; López-Moreno, J.I.; Araújo, M.B. Climate warming in Mediterranean mountains during the 21st century. AMBIO 2008, 37, 280–285. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lasanta, T.; Romo, A. Analysis of spatial and temporal evolution of vegetation cover in the Spanish Central Pyrenees: Role of human management. Environ. Manag. 2005, 34, 802–818. [Google Scholar] [CrossRef] [PubMed]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Beguería, S.; López-Moreno, J.I.; Lorente, A.; Seeger, M.; García-Ruiz, J.M. Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. AMBIO 2003, 32, 283–286. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Latron, J. Influence of forest canopy on snow distribution in a temperate mountain range. Hydrol. Process 2008, 22, 117–1266. [Google Scholar] [CrossRef]
- Cosandey, C.; Andréassian, V.; Martin, C.; Didon-Lescot, J.F.; Lavabre, J.; Folton, N.; Mathys, N.; Richard, D. The hydrological impact of the Mediterranean forest: A review of French research. J. Hydrol. 2005, 301, 235–249. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Zabalza, J.; Vicente-Serrano, S.M.; Revuelto, J.; Gilaberte, M.; Azorin-Molina, C.; Morán-Tejeda, E.; García-Ruiz, J.M.; Tague, C. Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragon River, Spain Pyrenees. Sci. Total Environ. 2014, 493, 1222–1231. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Lasanta, T.; García-Ruiz, J.M. Runoff and sediment yield from land under various uses in a Mediterranean mountain area: Long-term results from an experimental station. Earth Surf. Process. Landf. 2013, 38, 346–355. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Sitzia, T.; Semenzato, P.; Trentanovi, G. Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: A global overview. For. Ecol. Manag. 2010, 259, 1354–1362. [Google Scholar] [CrossRef]
- San Román Sanz, A.; Fernández, C.; Mouillot, F.; Ferrat, L.; Istria, D.; Pasqualini, V. Long-term forest dynamics and land-use abandonment in the Mediterranean mountains, Corsica, France. Ecol. Soc. 2013, 18, 38. [Google Scholar] [CrossRef]
- Molinillo, M.; Lasanta, T.; García-Ruiz, J.M. Managing degraded landscape after farmland abandonment in the Central Spanish Pyrenees. Environ. Manag. 1997, 21, 587–598. [Google Scholar] [CrossRef]
- San Emeterio, L.; Múgica, L.; Ugarte, M.D.; Goicoa, T.; Canals, R.M. Sustainability of traditional pastoral fires in highlands under global change: Effects on soil function and nutrient cycling. Agric. Ecosyst. Environ. 2016, 225, 155–163. [Google Scholar] [CrossRef]
- Morán-Ordoñez, A.; Buster, R.; Suárez-Seoane, S.; de Luis, E.; Calvo, L. Temporal changes in socio-ecological systems and their impact on ecosystems services at different governance scales: A case study of heathlands. Ecosystems 2013, 16, 765–782. [Google Scholar] [CrossRef]
- Bernués, A.; Rodríguez-Ortega, T.; Ripoll-Bosch, R.; Alfnes, F. Socio-cultural and economic valuation of ecosystem services provided by Mediterranean agroecosystems. PLoS ONE 2014, 9, e102479. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoff, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Errea, M.P.; Arnáez, J. The effects of landscape conservation measures in changing landscape patterns: A case study in Mediterranean mountain. Land Degrad. Dev. 2016, 27, 373–386. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; García-Ruiz, J.M. Clearing shrubland as a strategy to encourage extensive livestock farming in the Mediterranean mountains. Cuad. Investig. Geogr. 2019, 45. [Google Scholar] [CrossRef]
- Alados, C.L.; Saiz, H.; Nuche, P.; Gartzia, M.; Komac, B.; De Frutos, Á.; Pueyo, Y. Clearing vs. burning for restoring Pyrenean grasslands after shrub encroachment. Cuad. Investig. Geogr. 2019, 45. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Agroforestry and sylvopastoralism to combat land degradation in the Mediterranean basin: Old approaches to new problems. Agric. Ecosyst. Environ. 1990, 33, 99–109. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Gispert, M.; Pardini, G.; Emran, M.; Doni, S.; Masciandaro, G. Seasonal evolution of soil organic matter, glomalin and enzymes and potential for C storage after land abandonment and renaturalization processes in soils of NE Spain. Catena 2018, 162, 402–413. [Google Scholar] [CrossRef]
- Lizaga, I.; Quijano, L.; Gaspar, L.; Ramos, M.C.; Navas, A. Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena 2019, 172, 516–527. [Google Scholar] [CrossRef]
- Robledano-Aymerich, F.; Romero-Díaz, A.; Belmonte-Serrato, F.; Zapata-Pérez, V.M.; Martínez-Hernández, C.; Martínez-López, V. Ecogeomorphological consequences of land abandonment in semiarid Mediterranean areas: Integrated assessment of physical evolution and biodiversity. Agric. Ecosyst. Environ. 2014, 197, 222–242. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Pulido, M.; Giménez-Morera, A.; Keesstra, S.D. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Prog. Phys. Geogr. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Trudgill, S.T. Introduction. In Solute Processes; J Wiley: Chichester, UK, 1986; pp. 1–14. [Google Scholar]
- Smaling, E.M.A.; Oenema, O. Estimating nutrient balances in agro-ecosystems at different spatial scales. In Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA, 1997; pp. 229–252. [Google Scholar]
- Han, G.; Li, F.; Tan, Q. Effects of land use on water chemistry in a river draining karst terrain, southwest China. Hydrol. Sci. J. 2014, 59, 1063–1073. [Google Scholar] [CrossRef]
- Germer, S.; Neill, C.; Vetter, T.; Chaves, J.; Krusche, A.V.; Elsenbeer, H. Implications of long-term land-use change for the hydrology and solute budget of small catchments in Amazonia. J. Hydrol. 2009, 364, 349–363. [Google Scholar] [CrossRef]
- Figuereido, R.O.; Markewitz, D.; Davidson, E.A.; Schuler, A.E.; Watrin, O.; de Souza Silva, P. Land-use effects on the chemical attributes of low-order streams in the Eastern Amazon. J. Geophys. Res. 2010, 115, G04004. [Google Scholar] [CrossRef]
- Morales-Martín, L.; Wheater, H.; Lindenschmidt, K.E. Potential changes of annual averaged nutrient export in the South Saskatchewan River Basin under climate and land use change scenarios. Water 2018, 10, 1438. [Google Scholar] [CrossRef]
- Llorens, P.; Queralt, I.; Plana, F.; Gallart, F. Studying solute and particulate sediment transfer in a small Mediterranean mountainous catchment subject to land abandonment. Earth Surf. Process. Landf. 1997, 22, 1027–1035. [Google Scholar] [CrossRef]
- Outeiro, L.; Úbeda, X.; Farguell, J. The impact of agricultura on solute and suspended sediment load on a Mediterranean watershed after intense rainstorms. Earth Surf. Process. Landf. 2010, 35, 549–560. [Google Scholar]
- Nadal-Romero, E.; Lana-Renault, N.; Serrano-Muela, P.; Regüés, D.; Alvera, B.; García-Ruiz, J.M. Sediment balance in four catchments with different land cover in the Central Spanish Pyrenees. Z. Geomorphol. 2012, 56, 147–168. [Google Scholar] [CrossRef]
- Oliveira, J.S.; da Cunha Bustamante, M.M.; Markewitz, D.; Krusche, A.V.; Ferreira, L.G. Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry 2011, 105, 75–88. [Google Scholar]
- Ferreira, C.S.S.; Walsh, R.P.D.; Costa, M.; Oliveira Alves, C.; Ferreira, A.J.D. Dynamics of Surface water quality driven by distinct urbanization patterns and storms in a Portuguese peri-urban catchment. J. Soils Sediments 2016, 16, 2606–2621. [Google Scholar] [CrossRef]
- Merchán, D.; Luquin, E.; Hernández-García, I.; Campo-Bescós, M.A.; Giménez, R.; Casalí, J.; Del Valle de Lersundi, J. Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: A 10-year study. Catena 2019, 173, 114–130. [Google Scholar] [CrossRef]
- Messerli, B.; Vivirioli, D.; Weingartner, R. Mountains of the World-vulnerable water towers for the 21st century. AMBIO Spec. Rep. 2004, 13, 29–34. [Google Scholar]
- Boix-Fayos, C.; Martínez-Mena, M.; Arnau-Rosalén, E.; Calvo-Cases, A.; Castillo, V.; Albaladejo, J. Measuring soil erosion by field plots: Understanding the sources of variation. Earth Sci. Rev. 2006, 78, 267–285. [Google Scholar] [CrossRef]
- Risking, S.H.; Neill, C.; Jankowski, K.; Krusche, A.V.; McHorney, R.; Elsenbeer, H.; Macedo, M.N.; Nunes, D.; Porder, S. Solute and sediment export from Amazon forest and soybean headwater streams. Ecol. Appl. 2017, 27, 193–207. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Water Pollution from Agriculture: A Global Review; Food and Agriculture Organization of the United Nations: Rome, Italy; The International Water Management Institute on Behalf of the Water Land and Ecosystems Research Program: Colombo, Sri Lanka, 2017. [Google Scholar]
- Lasanta, T.; Cerdà, A. Long-term erosional responses after fire in the Central Spanish Pyrenees. 2. Solute release. Catena 2005, 60, 81–100. [Google Scholar] [CrossRef]
- Zavala, L.M.; De Celis, R.; Jordán, A. How wildfires affect soil properties. A brief review. Cuad. Investig. Geogr. 2014, 40, 311–331. [Google Scholar]
- Machado, A.; Serpa, D.; Ferreira, R.V.; Rodríguez-Blanco, M.L.; Pinto, R.; Nunes, M.; Cerqueira, M.A.; Keizer, J.J. Cation export by overland flow in a recently burnt forest area in north-central Portugal. Sci. Total Environ. 2015, 524–525, 201–212. [Google Scholar] [CrossRef]
- Ferreira, R.V.; Serpa, D.; Machado, A.I.; Rodríguez-Blanco, M.L.; Santos, L.F.; Taboada-Castro, M.T.; Cerqueira, M.A.; Keizer, J.J. Short-term nitrogen losses by overland flow in a recently burnt forest area in north-central Portugal: A study at micro-plot scale. Sci. Total Environ. 2016, 572, 1281–1288. [Google Scholar] [CrossRef]
- Ruiz-Flaño, P.; García-Ruiz, J.M.; Ortigosa, L. Geomophological evolution of abandoned fields. A case study in the Central Pyrenees. Catena 1992, 19, 301–308. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Errea, M.P. The footprint of marginal agriculture in the Mediterranean mountain landscape: An analysis of the Central Spanish Pyrenees. Sci. Total Environ. 2017, 599–600, 1823–1836. [Google Scholar] [CrossRef]
- Pueyo, Y.; Alados, C.L.; García-Ávila, B.; Kefi, S.; Maestro, M.; Rietberk, M. Comparing direct abiotic amelioration and facilitation as tools for restoration on semi-arid grassland. Restor. Ecol. 2009, 17, 908–916. [Google Scholar] [CrossRef]
- Llorens, P.; Gallart, F. Small basin response in a Mediterranean mountainous abandoned farming area: Research design and preliminary results. Catena 1992, 19, 309–320. [Google Scholar] [CrossRef]
- Walling, D.E.; Webb, B.W. Solutes in river systems. In Solute Processes; J Wiley: Chichester, UK, 1986; pp. 251–327. [Google Scholar]
- Crabtree, R.W.; Trudgill, S.T. Hydrochemical Budgets for a Magnesium Limestone catchment in low land England. J. Hydrol. 1984, 74, 67–79. [Google Scholar] [CrossRef]
- Ruiz-Flaño, P. Procesos de Erosión en Campos Abandonados del Pirineo; Geoforma Ediciones: Logroño, Spain, 1993; 220p. [Google Scholar]
- Casali, J.; Giménez, R.; Díez, J.; Álvarez-Mozos, J.; Del Valle de Lersundi, J.; Goñi, M.; Campo, M.A.; Chahor, Y.; Gastesi, R.; López, J. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agric. Water Manag. 2010, 97, 1683–1694. [Google Scholar] [CrossRef]
- Lasanta, T.; Beguería, S.; García-Ruiz, J.M. Geomorphic and hydrological effects of traditional shifting agriculture in a Mediterranean mountain area, Central Spanish Pyrenees. Mt. Res. Dev. 2006, 26, 146–152. [Google Scholar] [CrossRef]
- García Ruiz, J.M.; Lasanta, T. El Pirineo aragonés como paisaje cultural. Pirineos 2018, e038. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfire a disaster in the Mediterranean basin? A review. Int. J. Wildland Fire 2008, 17, 6. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
Soil Parameters (1991) | Mean and Standard Deviation |
---|---|
pH | 7.9 ± 0.3 |
% CaCO3 | 32.9 ± 6.2 |
% N | 1.8 ± 0.7 |
% Organic matter | 2.3 ± 1.1 |
C/N ratio | 7.1 ± 0.7 |
P (ppm) | 4.4 ± 3.7 |
K (ppm) | 1.3 ± 0.5 |
Mg (ppm) | 0.8 ± 0.2 |
% Sand | 40.5 ± 2.7 |
% Silt | 34.4 ± 4.9 |
% Clay | 25.1 ± 5.9 |
Annual Runoff (L m−2) | Suspended Sediment Concentration (mg L−1) | Solute Concentration (mg L−1) | Total Annual Sediment (g m−2) | % Solutes | |
---|---|---|---|---|---|
Dense shrub cover | 63.5 ± 32.0 (a) | 26.5 ± 24.1 (a) | 118.1 ± 27.9 (a) | 9.8 ± 5.63 (a) | 72.1 (a) |
Burned 1 (1991) | 68.4 ± 28.9 (a) | 28.3 ± 39.5 (a) | 130.6 ± 27.5 (a) | 13.3 ± 6.08 (a) | 70.1 (a) |
Grazing meadow | 89.2 ± 47.4 (a) | 35.2 ± 41.3 (a) | 115.6 ± 33.8 (a) | 16.2 ± 7.55 (a) | 63.4 (a) |
Abandoned field | 137.1 ± 62.0 (b) | 37.8 ± 37.6 (a) | 133.1 ± 33.3 (a) | 27.2 ± 13.31 (a) | 63.0 (a) |
Burned 2 (1993–2001) | 158.3 ± 88.4 (bc) | 151.5 ± 221.0 (bc) | 136.2 ± 43.0 (a) | 64.5 ± 46.37 (b) | 31.3 (b) |
Cereal | 237.5 ± 205.9 (c) | 138.6 ± 118.5 (b) | 192.6 ± 52.0 (b) | 81.6 ± 51.54 (b) | 40.0 (b) |
Fallow land | 181.0 ± 109.9 (bc) | 298.6 ± 398.4 (c) | 196.1 ± 41.1 (b) | 100.9 ± 79.26 (b) | 29.2 (b) |
Abandoned shifting agriculture | 146.2 ± 100.9 (bc) | 118.2 ± 93.3 (b) | 159.7 ± 24.7 (b) | 102.7 ± 114.5 (b) | 22.4 (b) |
Active shifting agriculture | 239.0 ± 143.8 (c) | 223.1 ± 298.9 (bc) | 181.9 ± 26.6 (b) | 143.8 ± 122.7 (b) | 29.1 (b) |
pH | CE | HCO3− | Cl | SO42− | Ca2+ | Mg2+ | Na+ | K+ | PO43− | N-NO3− | N-NO2− | N-NH4+ | SiO2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | ||||||||||||||
CE | 0.169 * | |||||||||||||
HCO3− | 0.464 ** | 0.641 ** | ||||||||||||
Cl | −0.280 ** | 0.418 ** | -0.193 ** | |||||||||||
SO42− | −0.366 ** | 0.357 ** | 0.445 ** | 0.008 | ||||||||||
Ca2+ | 0.047 | 0.675 ** | 0.514 ** | 0.131 | 0.266 * | |||||||||
Mg2+ | 0.085 | 0.686 ** | 0.457 ** | 0.354 ** | 0.330 ** | 0.544 ** | ||||||||
Na+ | 0.050 | 0.589 ** | 0.343 ** | 0.325 ** | 0.542 ** | 0.454 ** | 0.464 ** | |||||||
K+ | −0.194 ** | 0.121 | 0.002 | 0.247 ** | 0.116 | 0.028 | 0.134 | 0.179 * | ||||||
PO43− | 0.030 | 0.104 | 0.077 | 0.021 | 0.092 | 0.081 | 0.027 | 0.009 | 0.115 | |||||
N-NO3− | 0.188 * | −0.035 | 0.076 | −0.003 | 0.302 ** | −0.0115 | −0.036 | −0.044 | 0.166 * | 0.329 ** | ||||
N-NO2− | 0.118 | 0.072 | 0.137 | 0.035 | 0.213 ** | 0.027 | 0.039 | 0.072 | 0.148 * | −0.066 | 0.402 ** | |||
N-NH4− | −0.072 | 0.013 | −0.024 | −0.004 | −0.040 | 0.039 | −0.024 | −0.100 | −0.009 | −0.018 | 0.115 | 0.521 ** | ||
SiO2 | −0.069 | −0.278 ** | −0.214 ** | −0.349 ** | −0.325 ** | 0.104 | −0.219 | −0.289 ** | −0.042 | 0.195 ** | −0.205 ** | −0.270 ** | −0.048 |
HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | Na+ | K+ | |
---|---|---|---|---|---|---|---|
Dense shrub cover | 4.6 ± 2.7 (a) | 0.3 ± 0.2 (a) | 0.1 ± 0.2 (a) | 1.7 ± 1 (a) | 0.1 ± 0.04 (a) | 0.04 ± 0.03 (a) | 0.3 ± 0.2 (a) |
Burned 1 (1991) | 6.3 ± 3.0 (ab) | 0.1 ± 0.3 (ab) | 0.2 ± 2.0 (a) | 2.2 ± 1.0 (a) | 0.1 ± 0.1 (ab) | 0.1 ± 0.1 (ab) | 0.4 ± 0.3 (a) |
Grazing meadow | 6.6 ± 3.0 (a) | 0.4 ± 0.4 (a) | 0.2 ± 0.8 (a) | 2.6 ± 1.1 (a) | 0.1 ± 0.1(a) | 0.07 ± 0.03 (a) | 0.3 ± 0.2 (ab) |
Abandoned field | 12.3 ± 6.6 (ab) | 0.7 ± 0.6 (ab) | 0.1 ± 0.1 (a) | 5.0 ± 4.0 (a) | 0.2 ± 0.1 (ab) | 0.1 ± 0.1 (ab) | 0.7 ± 0.4 (a) |
Burned 2 (1993–2001) | 14.2 ± 9.9 (a) | 0.9 ± 0.8 (ab) | 0.1 ± 0.8 (a) | 5.2 ± 3.2 (a) | 0.2 ± 0.1 (a) | 0.2 ± 0.2 (ab) | 0.6 ± 0.3 (b) |
Cereal | 19.2 ± 9.5 (b) | 1.8 ± 1.1 (b) | 2.3 ± 5.2 (b) | 7.8 ± 3.3 (b) | 0.4 ± 0.3 (b) | 0.5 ± 0.3 (b) | 0.9 ± 0.5 (a) |
Fallow land | 17.1 ± 10.5 (b) | 1.3 ± 1.0 (ab) | 0.8 ± 1.8 (b) | 6.5 ± 3.6 (b) | 0.4 ± 0.3 (b) | 0.5 ± 0.5 (b) | 0.7 ± 0.5 (ab) |
Abandoned shifting agriculture | 14.2 ± 7.6 (ab) | 0.7 ± 0.6 (ab) | 0.1 ± 0.2 (a) | 5.6 ± 3.5 (b) | 0.3 ± 0.2 (ab) | 0.2 ± 0.1 (ab) | 0.4 ± 0.3 (b) |
Active shifting agriculture | 23.7 ± 16.0 (ab) | 2.0 ± 2.0 (ab) | 0.5 ± 0.8 (ab) | 8.5 ± 5.2 (b) | 0.4 ± 0.2 (b) | 0.7 ± 0.8 (b) | 1.0 ± 0.8 (ab) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadal-Romero, E.; Khorchani, M.; Lasanta, T.; García-Ruiz, J.M. Runoff and Solute Outputs under Different Land Uses: Long-Term Results from a Mediterranean Mountain Experimental Station. Water 2019, 11, 976. https://doi.org/10.3390/w11050976
Nadal-Romero E, Khorchani M, Lasanta T, García-Ruiz JM. Runoff and Solute Outputs under Different Land Uses: Long-Term Results from a Mediterranean Mountain Experimental Station. Water. 2019; 11(5):976. https://doi.org/10.3390/w11050976
Chicago/Turabian StyleNadal-Romero, Estela, Makki Khorchani, Teodoro Lasanta, and José M. García-Ruiz. 2019. "Runoff and Solute Outputs under Different Land Uses: Long-Term Results from a Mediterranean Mountain Experimental Station" Water 11, no. 5: 976. https://doi.org/10.3390/w11050976
APA StyleNadal-Romero, E., Khorchani, M., Lasanta, T., & García-Ruiz, J. M. (2019). Runoff and Solute Outputs under Different Land Uses: Long-Term Results from a Mediterranean Mountain Experimental Station. Water, 11(5), 976. https://doi.org/10.3390/w11050976