The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania’s Wami Ruvu Basin (WRB)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Input Data and Model Development
2.2.1. Demand Sites and Supply Sources
2.2.2. Model Configuration
2.3. Model Performance
3. Results
3.1. Spatial and Temporal Trends in Water Supply and Demand
3.2. Projection of Unmet Water Demands
3.3. Analysis of Scenarios
3.3.1. Impacts of Discharge Variability on Water Demand
3.3.2. Impact of Water Demand on River Flows
4. Discussion
4.1. Mitigating Hydro-Climatic Impacts on Water Demand
4.2. Enhancing Future Water Sustainability
4.3. Resilience and Reliability of Water Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rayne, S.; Forest, K. The decline of global per capita renewable internal freshwater resources. viXra. Available online: http://vixra.org/pdf/1301.0073v1.pdf (accessed on 19 June 2019).
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- McClain, M.E. Balancing water resources development and environmental sustainability in Africa: A review of recent research findings and applications. AMBIO 2013, 42, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Abdullahi, S.A.; Muhammad, M.M.; Adeogun, B.K.; Mohammed, I.U. Assessment of water availability in the Sokoto Rima River Basin. Sci. Acad. Publ. 2014, 4, 220–233. [Google Scholar]
- Adgolign, T.B.; Rao, G.V.R.S.; Abbulu, Y. WEAP modeling of surface water resources allocation in Didessa Sub-Basin, West Ethiopia. Sustain. Water Resour. Manag. 2016, 2, 55–70. [Google Scholar] [CrossRef]
- Höllermann, B.; Giertz, S.; Diekkrüger, B. Benin 2025-Balancing Future Water Availability and Demand Using the WEAP “Water Evaluation and Planning” System. Water Resour. Manag. 2010, 24, 3591–3613. [Google Scholar] [CrossRef]
- Johannsen, I.; Hengst, J.; Goll, A.; Höllermann, B.; Diekkrüger, B. Future of Water Supply and Demand in the Middle Drâa Valley, Morocco, under Climate and Land Use Change. Water 2016, 8, 313. [Google Scholar] [CrossRef]
- George, O.; Metobwa, M.; Mourad, K.A.; Ribbe, L. Water demand simulation using WEAP 21: A case study of the Mara River Basin, Kenya. Int. J. Nat. Resour. Ecol. Manag. 2018, 3, 9–18. [Google Scholar]
- Ngoran, S.D.; Xue, X.Z.; Wesseh, P.K. Signatures of water resources consumption on sustainable economic growth in Sub-Saharan African countries. Int. J. Sustain. Built Environ. 2016, 5, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Lévite, H.; Sally, H.; Cour, J. Testing water demand management scenarios in a water-stressed basin in South Africa: Application of the WEAP model. Phys. Chem. Earth 2003, 28, 779–786. [Google Scholar] [CrossRef]
- Mutiga, J.K.; Mavengano, S.T.; Zhongbo, S.; Woldai, T.; Becht, R. Water Allocation as a Planning Tool to Minimise Water Use Conflicts in the Upper Ewaso Ng’iro North Basin, Kenya. Water Resour. Manag. 2010, 24, 3939–3959. [Google Scholar] [CrossRef]
- Mounir, Z.M.; Ma, C.M.; Amadou, I. Application of water evaluation and planning (WEAP): A model to assess future water demands in the Niger River (in Niger Republic). Modern Appl. Sci. 2011, 5, 38–49. [Google Scholar] [CrossRef]
- Purkey, D.; Galbraith, H.; Huber-Lee, A.; Sieber, J.; Yates, D. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Water Int. 2009, 30, 501–512. [Google Scholar]
- Stockholm Environment Institute. WEAP-TUTORIAL Water Evaluation and Planning System. In WEAP; Stockholm Environment Institute: Boston, MA, USA, 2016. [Google Scholar]
- Melesse, A.M.; Abtew, W.; Setegn, S.G. Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–718. [Google Scholar]
- Raskina, P.; Hansen, E.; Zhu, Z.; Stavisky, D. Simulation of water supply and demand in the aral sea region. Water Int. 1992, 17, 55–67. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model Part 1: Model Characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Saha, A.; Donoso, M.; Mohamed, A.; Masikini, R.; Abbott, V.; Anderson, E. Water Atlas of the Wami/Ruvu Basin, Tanzania; Florida International University: Miami, FL, USA, 2014. [Google Scholar]
- GLOWS-FIU. Socioeconomic Conditions and Links to Freshwater Ecosystem Services of the Ruvu River Basin, Tanzania; Global Water for Sustainability Program, Florida International University: Miami, FL, USA, 2013; Volume 38. [Google Scholar]
- GLOWSFIU. Climate, Forest Cover, and Water Resources Vulnerability Wami/Ruvu Basin, Tanzania; GLOWSFIU: Miami, FL, USA, 2014; ISBN 9781941993033. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Maliehe, M.; Mulungu, D.M.M. short 2. Phys. Chem. Earth 2017, 100, 305–316. [Google Scholar] [CrossRef]
- Spalding-fecher, D.R. Impact of Climate Change and Irrigation Development on Hydropower Supply in the Zambezi River Basin, and Implications for Power Sector Development in the Southern African Power Pool. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2018. [Google Scholar]
- le Blanc, D.; Perez, R. The relationship between rainfall and human density and its implications for future water stress in Sub-Saharan Africa. Ecol. Econ. 2008, 66, 319–336. [Google Scholar] [CrossRef]
- Brown, C.; Meeks, R.; Hunu, K.; Yu, W. Hydroclimate risk to economic growth in sub-Saharan Africa. Clim. Chang. 2011, 106, 621–647. [Google Scholar] [CrossRef]
- Nobert, J. Hydrological response of watershed systems to land use/cover change. A case of Wami River Basin. Open Hydrol. J. 2012, 6, 78–87. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Davis, K.F.; Rulli, M.C.; D’Odorico, P. Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources. Adv. Water Resour. 2016, 94, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Mutiga, J.K.; Zhongbo, S.; Woldai, T. Impacts of agricultural intensification through upscaling of suitable rainwater harvesting technologies in the upper Ewaso Ng’iro North basin, Kenya. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 2477–2501. [Google Scholar] [CrossRef]
- Bank, W. Assessment of Groundwater Challenges and Opportunities in Support of Sustainable Development in Sub-Saharan Africa; World Bank: Washington, DC, USA, 2018. [Google Scholar]
City | Abbreviation | Population | Water Demand (m3/year) |
---|---|---|---|
Dodoma | Dom | 1,213,835 | 20,381,321 |
Morogoro | Moro | 1,536,779 | 32,149,814 |
Pwani | Pwan | 825,135 | 16,725,398 |
Dar es Salaam | Dar | 4,245,127 | 256,119,646 |
Tanga | Tanga | 175,176 | 1,678,403 |
Manyara | Manyr | 125,408 | 1,201,566 |
Sectors | City | Water Demand (m3/year) |
---|---|---|
Irrigation | Dar, Pwan, Moro, Dom | 652,800,000 |
Domestic | Dar, Pwan, Moro, Dom | 325,300,000 |
Industry | Dar, Moro | 60,600,000 |
Livestock | Dar, Moro, Dom | 11,300,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraji, M.; Liu, J.; Zheng, C. The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania’s Wami Ruvu Basin (WRB). Water 2019, 11, 1280. https://doi.org/10.3390/w11061280
Miraji M, Liu J, Zheng C. The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania’s Wami Ruvu Basin (WRB). Water. 2019; 11(6):1280. https://doi.org/10.3390/w11061280
Chicago/Turabian StyleMiraji, Mngereza, Jie Liu, and Chunmiao Zheng. 2019. "The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania’s Wami Ruvu Basin (WRB)" Water 11, no. 6: 1280. https://doi.org/10.3390/w11061280