Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Data Analysis
- (1)
- Subsurface runoff coefficient () was expressed as a percentage ratio between the total RD from GR ( and the total precipitation depth :
- (2)
- Peak flow reduction ) was calculated as the percentage difference between the hydrographs peak of the IR and hydrographs peak of the GR):
- (3)
- Peak flow lag-time (PFL) was determined as the time difference between the peak of precipitation hyetograph and the peak of GR hydrograph :
- (4)
- Time to start of runoff (TSR) was evaluated, according to Stovin et al. [11], as the time difference between the start of rainfall and the time at which the total runoff exceeded 0.01 mm :
2.3. Soil hydraulic Properties
2.4. Simulation Procedure
2.5. Numerical Domain and Boundary Conditions
3. Results and Discussion
3.1. Rainfall Events
3.2. Green Roof Hydrologic Effectiveness
3.3. Soil Hydraulic Properties
3.4. Green Roof Hydraulic Behavior for Different Soil Depths
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Starzec, M.; Dziopak, J.; Słyś, D.; Pochwat, K.; Kordana, S. Dimensioning of Required Volumes of Interconnected Detention Tanks Taking into Account the Direction and Speed of Rain Movement. Water 2018, 10, 1826. [Google Scholar] [CrossRef]
- Kordana, S. The identification of key factors determining the sustainability of stormwater systems. E3S Web Conf. 2018, 45, 00033. [Google Scholar] [CrossRef] [Green Version]
- Piro, P.; Turco, M.; Palermo, S.A.; Principato, F.; Brunetti, G. A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks. In The Internet of Things for Smart Urban Ecosystems. Internet of Things (Technology, Communications and Computing); Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Pumo, D.; Arnone, E.; Francipane, A.; Caracciolo, D.; Noto, L.V. Potential implications of climate 363 change and urbanization on watershed hydrology. J. Hydrol. 2017, 554, 80–99. [Google Scholar] [CrossRef]
- Palermo, S.A.; Zischg, J.; Sitzenfrei, R.; Rauch, W.; Piro, P. Parameter Sensitivity of a Microscale Hydrodynamic Model. In New Trends in Urban Drainage Modelling. UDM 2018; Green Energy and Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; pp. 982–987. [Google Scholar]
- Bhaskar, A.S.; Hogan, D.M.; Archfield, S.A. Urban base flow with low impact development. Hydrol. Process. 2016, 30, 3156–3171. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Šimůnek, J.; Turco, M.; Piro, P. On the use of global sensitivity analysis for the numerical analysis of permeable pavements. Urban Water J. 2018, 15, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Brunetti, G.; Carbone, M.; Piro, P. Modelling the hydraulic behaviour of permeable pavements through a reservoir element model. Int. Multidiscip. Sci. GeoConf. SGEM 2018, 18, 507–514. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci. Total Environ. 2017, 592, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Voyde, E.; Fassman, E.; Simcock, R. Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. J. Hydrol. 2010, 394, 384–395. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Pęczkowski, G.; Kowalczyk, T.; Szawernoga, K.; Orzepowski, W.; Żmuda, R.; Pokładek, R. Hydrological Performance and Runoff Water Quality of Experimental Green Roofs. Water 2018, 10, 1185. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Arcuri, N. Thermal inertia assessment of an experimental extensive green roof in summer conditions. Build. Environ. 2018, 131, 264–276. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Rowe, D.B. Green roofs as a means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.S.; Kang, J.; Choi, M.S. Acoustic effects of green roof systems on a low-profiled structure at street level. Build. Environ. 2012, 50, 44–55. [Google Scholar] [CrossRef]
- Buccola, N.; Spolek, G. A pilot-scale evaluation of green roof runoff retention, detention, and quality. Water Air Soil Pollut. 2011, 216, 83–92. [Google Scholar] [CrossRef]
- Krebs, G.; Kuoppamäki, K.; Kokkonen, T.; Koivusalo, H. Simulation of green roof test bed runoff. Hydrol. Process. 2016, 30, 250–262. [Google Scholar] [CrossRef]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological performance of extensive green roofs in New York City: Observations and multi-year modeling of three full-scale systems. Environ. Res. Lett. 2013, 8, 024036. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Voyde, E.; Simcock, R.; Hong, Y.S. 4 Living roofs in 3 locations: Does configuration affect runoff mitigation? J. Hydrol. 2013, 490, 11–20. [Google Scholar] [CrossRef]
- Peng, Z.; Stovin, V. Independent validation of the SWMM green roof module. J. Hydrol. Eng. 2017, 22, 04017037. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Principato, F.; Ferrante, A.P.; Frega, F.; Bartolo, M.; Piro, P. Mitigation of Urban Surface Runoff through LID Solutions: Case Study in Mediterranean Area. In New Trends in Urban Drainage Modelling. UDM 2018; Green Energy and Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; pp. 665–670. [Google Scholar]
- Metselaar, K. Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resour. Conserv. Recycl. 2012, 64, 49–55. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Compared performance of a conceptual and a mechanistic hydrologic models of a green roof. Hydrol. Process. 2012, 26, 73. [Google Scholar] [CrossRef]
- Brunetti, G.; Šimůnek, J.; Piro, P. A Comprehensive Analysis of the Variably Saturated 461 Hydraulic Behavior of a Green Roof in a Mediterranean Climate. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Hilten, R.N.; Lawrence, T.M.; Tollner, E.W. Modeling stormwater runoff from green roofs with HYDRUS-1D. J. Hydrol. 2008, 358, 288–293. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W., Jr. Modeling hydrologic performance of a green roof system with HYDRUS-2D. J. Environ. Eng. 2015, 141, 04015036. [Google Scholar] [CrossRef]
- Garofalo, G.; Palermo, S.; Principato, F.; Theodosiou, T.; Piro, P. The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water 2016, 8, 44. [Google Scholar] [CrossRef]
- Liu, R.; Fassman-Beck, E. Hydrologic response of engineered media in living roofs and bioretention to large rainfalls: Experiments and modeling. Hydrol. Process. 2017, 31, 556–572. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S. Modelling green roof stormwater response for different soil depths. Landsc. Urban Plan. 2016, 153, 170–179. [Google Scholar] [CrossRef]
- Soulis, K.X.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; Morimanno, F.; Palermo, S.A. Simple flowmeter device for LID systems: From laboratory procedure to full-scale implementation. Flow Meas. Instrum. 2019, 65, 240–249. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Shiau, J.T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 2003, 17, 42–57. [Google Scholar] [CrossRef]
- Arpacal. 2019. Available online: http://www.cfd.calabria.it/index.php/dati-stazioni/dati-storici (accessed on 24 January 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; FAO: Rome, Italy, 1998. [Google Scholar]
- Lazzarin, R.M.; Castellotti, F.; Busato, F. Experimental measurements and numerical modelling of a green roof. Energy Build. 2005, 37, 1260–1267. [Google Scholar] [CrossRef]
- Arya, L.M. Wind and hot-air methods. In Methods of Soil Analysis; Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 916–926. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. Pressure plate extractor. In Methods of Soil Analysis; Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 688–690. [Google Scholar]
- Schindler, U. Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben. Arch. Für Acker-Und Pflanzenbau Und Bodenkd. 1980, 24, 1–7. [Google Scholar]
- Wind, G.P. Capillary conductivity data estimated by a simple method. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/350954 (accessed on 3 July 2019).
- Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol. 2008, 356, 147–162. [Google Scholar] [CrossRef]
- Schindler, U.; Durner, W.; von Unold, G.; Mueller, L.; Wieland, R. The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. Soil Sci. 2010, 173, 563–572. [Google Scholar] [CrossRef]
- Schindler, U.; Durner, W.; von Unold, G.; Muller, L. Evaporation Method for Measuring Unsaturated Hydraulic Properties of Soils: Extending the Measurement Range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [Google Scholar] [CrossRef]
- UMS GmbH. UMS (2015): Manual HYPROP, Version 2015-01; UMS GmbH: München, Germany, 8137; Volume 37. [Google Scholar]
- Pertassek, T.; Peters, A.; Durner, W. HYPROP-FIT Software User’s Manual, V.3.0; UMS GmbH: München, Germany, 2015. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; PUDOC: Wageningen, The Netherlands, 1978. [Google Scholar]
- UMS GmbH. KSAT: Operation Manual; Umwelt Monitoring System; GmbH: Munich, Germany, 2012. [Google Scholar]
No. | Date | PD | D | Mean i | Max i | ADWP | RP |
---|---|---|---|---|---|---|---|
(dd/mm/yyyy; hh:mm) | (mm) | (hh:mm) | (mm/h) | (mm/h) | (hh:mm:ss) | (years) | |
1 | 07/10/2015; 07:47 | 42.2 | 15:05 | 2.8 | 121.9 | - | <1 |
2 | 09/10/2015; 19:21 | 24.1 | 16:32 | 1.5 | 167.6 | 43:40 | <1 |
3 | 10/10/2015; 23:25 | 48.3 | 17:11 | 2.8 | 106.7 | 11:33 | <1 |
4 | 15/10/2015; 08:01 | 6.4 | 04:24 | 1.4 | 15.2 | 90:45 | <1 |
5 | 21/10/2015; 14:51 | 120.1 | 42:55 | 2.8 | 45.7 | 146:25 | <20 |
6 | 29/10/2015; 13:10 | 63.3 | 35:32 | 1.8 | 61.0 | 147:25 | <2 |
7 | 21/11/2015; 23:26 | 37.1 | 10:37 | 3.5 | 30.5 | 526:45 | <1 |
8 | 23/11/2015; 16:30 | 13.0 | 04:19 | 3.0 | 15.2 | 30:28 | <1 |
9 | 24/11/2015; 17:24 | 97.3 | 61:31 | 1.6 | 76.2 | 20:34 | <3 |
10 | 28/11/2015; 08:49 | 2.8 | 01:53 | 1.5 | 15.2 | 25:54 | <1 |
11 | 10/12/2015; 13:05 | 8.4 | 02:48 | 3.0 | 15.2 | 290:22 | <1 |
12 | 03/01/2016; 06:04 | 66.3 | 36:28 | 1.8 | 76.2 | 566:10 | <2 |
13 | 05/01/2016; 02:51 | 3.3 | 08:15 | 0.4 | 30.5 | 08:19 | <1 |
14 | 06/01/2016; 05:45 | 24.6 | 24:08 | 1.0 | 30.5 | 18:37 | <1 |
15 | 07/01/2016; 19:36 | 9.9 | 08:58 | 1.1 | 15.2 | 13:43 | <1 |
16 | 12/01/2016; 19:02 | 6.1 | 08:43 | 0.7 | 30.5 | 110:28 | <1 |
17 | 15/01/2016; 21:39 | 24.9 | 25:51 | 1.0 | 15.2 | 58:22 | <1 |
18 | 11/02/2016; 08:01 | 23.4 | 04:54 | 4.8 | 30.5 | 519:58 | <1 |
19 | 12/02/2016; 06:25 | 18.8 | 07:07 | 2.6 | 45.7 | 17:30 | <1 |
20 | 12/02/2016; 23:22 | 74.9 | 35:24 | 2.1 | 76.2 | 09:49 | <3 |
21 | 18/02/2016; 05:26 | 45.2 | 18:25 | 2.5 | 45.7 | 90:40 | <1 |
22 | 20/02/2016; 12:15 | 4.6 | 00:48 | 5.7 | 30.5 | 36:24 | <1 |
23 | 23/02/2016; 22:11 | 3.1 | 02:55 | 1.0 | 15.2 | 81:07 | <1 |
24 | 26/02/2016; 03:52 | 10.9 | 19:30 | 0.6 | 30.5 | 50:46 | <1 |
25 | 01/03/2016; 00:00 | 4.1 | 01:21 | 3.0 | 15.2 | 72:37 | <1 |
26 | 01/03/2016; 07:19 | 31.0 | 15:33 | 2.0 | 45.7 | 05:58 | <1 |
27 | 03/03/2016; 06:13 | 40.9 | 18:14 | 2.2 | 61.0 | 31:21 | <1 |
28 | 07/03/2016; 06:13 | 7.4 | 14:36 | 0.5 | 15.2 | 77:46 | <1 |
29 | 09/03/2016; 14:42 | 4.8 | 06:51 | 0.7 | 15.2 | 41:52 | <1 |
30 | 12/03/2016; 06:27 | 6.1 | 08:03 | 0.8 | 15.2 | 56:54 | <1 |
31 | 15/03/2016; 08:06 | 9.1 | 01:49 | 5.0 | 30.5 | 65:36 | <1 |
32 | 16/03/2016; 14:38 | 27.9 | 20:10 | 1.4 | 30.5 | 29:33 | <1 |
33 | 23/03/2016; 07:43 | 34.3 | 22:30 | 1.5 | 91.4 | 140:55 | <1 |
34 | 24/03/2016; 23:08 | 2.8 | 01:15 | 2.2 | 15.2 | 16:55 | <1 |
35 | 08/04/2016; 08:33 | 5.3 | 00:54 | 5.9 | 30.5 | 344:10 | <1 |
36 | 08/04/2016; 21:12 | 2.3 | 02:12 | 1.0 | 15.2 | 11:46 | <1 |
37 | 09/04/2016; 20:39 | 15.7 | 08:36 | 1.8 | 30.5 | 21:13 | <1 |
38 | 23/04/2016; 18:12 | 8.1 | 00:36 | 13.5 | 61.0 | 325:01 | <1 |
39 | 24/04/2016; 04:00 | 11.2 | 11:12 | 1.0 | 106.7 | 09:13 | <1 |
40 | 25/04/2016; 04:38 | 2.5 | 02:00 | 1.3 | 15.2 | 13:27 | <1 |
41 | 25/04/2016; 12:45 | 8.1 | 05:36 | 1.5 | 76.2 | 06:07 | <1 |
42 | 28/04/2016; 21:44 | 14.7 | 08:36 | 1.7 | 15.2 | 75:25 | <1 |
43 | 01/05/2016; 11:00 | 3.3 | 07:50 | 0.4 | 15.2 | 52:40 | <1 |
44 | 02/05/2016; 06:28 | 23.9 | 24:54 | 1.0 | 15.2 | 11:40 | <1 |
45 | 04/05/2016; 03:49 | 5.3 | 04:00 | 1.3 | 15.2 | 20:25 | <1 |
46 | 12/05/2016; 03:47 | 3.6 | 09:36 | 0.4 | 30.5 | 188:01 | <1 |
47 | 14/05/2016; 19:09 | 35.6 | 21:42 | 1.6 | 61.0 | 53:48 | <1 |
48 | 20/05/2016; 09:15 | 2.5 | 02:48 | 0.9 | 15.2 | 112:27 | <1 |
49 | 13/06/2016; 01:01 | 2.8 | 03:30 | 0.8 | 15.2 | 564:57 | <1 |
50 | 19/06/2016; 11:34 | 2.5 | 06:00 | 0.4 | 15.2 | 151:06 | <1 |
51 | 24/06/2016; 03:34 | 7.9 | 01:42 | 4.6 | 15.2 | 106:03 | <1 |
52 | 26/07/2016; 14:43 | 2.0 | 00:12 | 10.2 | 45.7 | 777:28 | <1 |
53 | 07/08/2016; 13:28 | 8.4 | 10:24 | 0.8 | 15.2 | 286:34 | <1 |
54 | 11/08/2016; 22:29 | 2.3 | 00:12 | 11.5 | 30.5 | 391:36 | <1 |
55 | 23/08/2016; 14:51 | 22.4 | 22:06 | 1.0 | 76.2 | 280:10 | <1 |
56 | 31/08/2016; 23:31 | 6.9 | 06:54 | 1.0 | 30.5 | 178:37 | <1 |
57 | 06/09/2016; 03:44 | 36.3 | 07:12 | 5.0 | 76.2 | 117:21 | <1 |
58 | 08/09/2016; 03:50 | 13.7 | 07:18 | 1.9 | 15.2 | 40:52:48 | <1 |
59 | 13/09/2016; 15:29 | 12.5 | 02:42 | 4.6 | 91.4 | 124:24 | <1 |
60 | 17/09/2016; 04:22 | 7.9 | 05:48 | 1.4 | 45.7 | 82:10 | <1 |
61 | 18/09/2016; 23:19 | 38.9 | 20:48 | 1.9 | 61.0 | 37:10 | <1 |
62 | 22/09/2016; 05:49 | 2.3 | 00:42 | 3.3 | 15.2 | 57:40 | <1 |
Mean | 20.3 | 11:47 | 2.5 | 40.8 | 129:27 | ||
Minimum | 2.0 | 00:12 | 0.4 | 15.2 | 05:58 | ||
Maximum | 120.1 | 61:31 | 13.5 | 167.6 | 777:28 | ||
Sum | 1256.3 |
No. | Date | PD | RD | SRC | PFR | PFL | TSR |
---|---|---|---|---|---|---|---|
(dd/mm/yyyy; hh:mm) | (mm) | (mm) | (%) | (%) | (min) | (min) | |
1 | 07/10/2015; 07:47 | 42.2 | 20.0 | 47.4 | 65.4 | 6.0 | 17.0 |
2 | 09/10/2015; 19:21 | 24.1 | 10.8 | 44.8 | 17.9 | 5.0 | 23.0 |
3 | 10/10/2015; 23:25 | 48.3 | 31.0 | 64.2 | 13.3 | 2.0 | 10.0 |
4 | 15/10/2015; 08:01 | 6.4 | 0.4 | 6.3 | - | - | - |
5 | 21/10/2015; 14:51 | 120.1 | 100.0 | 83.3 | 28.3 | 9.0 | 30.0 |
6 | 29/10/2015; 13:10 | 63.3 | 46.4 | 73.3 | 52.6 | 531.0 | 51.0 |
7 | 21/11/2015; 23:26 | 37.1 | 13.0 | 35.0 | 83.0 | 468.0 | 200.0 |
8 | 23/11/2015; 16:30 | 13.0 | 4.2 | 32.3 | 82.0 | 197.0 | 60.0 |
9 | 24/11/2015; 17:24 | 97.3 | 79.5 | 81.7 | 44.3 | 207.0 | 10.0 |
10 | 28/11/2015; 08:49 | 2.8 | 0.4 | 14.3 | - | - | - |
11 | 10/12/2015; 13:05 | 8.4 | 1.6 | 19.0 | 95.2 | 168.0 | 15.0 |
12 | 03/01/2016; 06:04 | 66.3 | 32.7 | 49.3 | 75.5 | 1647.0 | 54.0 |
13 | 05/01/2016; 02:51 | 3.3 | 0.3 | 9.1 | - | - | - |
14 | 06/01/2016; 05:45 | 24.6 | 12.9 | 52.4 | 51.3 | 57.0 | 5.0 |
15 | 07/01/2016; 19:36 | 9.9 | 6.4 | 64.6 | 36.6 | 369.0 | 3.0 |
16 | 12/01/2016; 19:02 | 6.1 | 1.1 | 18.0 | - | - | - |
17 | 15/01/2016; 21:39 | 24.9 | 13.2 | 53.0 | 29.6 | 1447.0 | 24.0 |
18 | 11/02/2016; 08:01 | 23.4 | 4.1 | 17.5 | 79.7 | 18.0 | 42.0 |
19 | 12/02/2016; 06:25 | 18.8 | 11.1 | 59.0 | 27.6 | 58.0 | 102.0 |
20 | 12/02/2016; 23:22 | 74.9 | 56.0 | 74.8 | 22.5 | 8.0 | 5.0 |
21 | 18/02/2016; 05:26 | 45.2 | 30.4 | 67.3 | 33.6 | 55.0 | 39.0 |
22 | 20/02/2016; 12:15 | 4.6 | 0.9 | 19.6 | - | - | - |
23 | 23/02/2016; 22:11 | 3.1 | 0.1 | 3.2 | - | - | - |
24 | 26/02/2016; 03:52 | 10.9 | 4.6 | 42.2 | 73.6 | 13.0 | 42.0 |
25 | 01/03/2016; 00:00 | 4.1 | 0.7 | 17.1 | - | - | - |
26 | 01/03/2016; 07:19 | 31.0 | 19.9 | 64.2 | 32.1 | 49.0 | 73.0 |
27 | 03/03/2016; 06:13 | 40.9 | 29.4 | 71.9 | 41.3 | 1280.0 | 154.0 |
28 | 07/03/2016; 06:13 | 7.4 | 2.1 | 28.4 | - | - | - |
29 | 09/03/2016; 14:42 | 4.8 | 0.9 | 18.8 | - | - | - |
30 | 12/03/2016; 06:27 | 6.1 | 1.6 | 26.2 | - | - | - |
31 | 15/03/2016; 08:06 | 9.1 | 3.8 | 41.8 | 44.9 | 124.0 | 3.0 |
32 | 16/03/2016; 14:38 | 27.9 | 19.4 | 69.5 | 41.6 | 897.0 | 73.0 |
33 | 23/03/2016; 07:43 | 34.3 | 16.1 | 46.9 | 74.5 | 9.0 | 26.0 |
34 | 24/03/2016; 23:08 | 2.8 | 0.1 | 3.6 | - | - | - |
35 | 08/04/2016; 08:33 | 5.3 | 0.3 | 5.7 | - | - | - |
36 | 08/04/2016; 21:12 | 2.3 | 0.0 | 0.0 | - | - | - |
37 | 09/04/2016; 20:39 | 15.7 | 5.8 | 36.9 | 86.5 | 8.0 | 11.0 |
38 | 23/04/2016; 18:12 | 8.1 | 1.8 | 22.2 | 92.9 | 11.0 | 15.0 |
39 | 24/04/2016; 04:00 | 11.2 | 2.9 | 25.9 | 62.1 | 4.0 | 10.0 |
40 | 25/04/2016; 04:38 | 2.5 | 0.2 | 8.0 | - | - | - |
41 | 25/04/2016; 12:45 | 8.1 | 4.2 | 51.9 | 73.3 | 1.0 | 4.0 |
42 | 28/04/2016; 21:44 | 14.7 | 5.8 | 39.5 | * | 521.0 | 108.0 |
43 | 01/05/2016; 11:00 | 3.3 | 0.3 | 9.1 | - | - | - |
44 | 02/05/2016; 06:28 | 23.9 | 16.9 | 70.7 | 72.8 | 1253.0 | 399.0 |
45 | 04/05/2016; 03:49 | 5.3 | 1.3 | 24.5 | - | - | - |
46 | 12/05/2016; 03:47 | 3.6 | 0.0 | 0.0 | - | - | - |
47 | 14/05/2016; 19:09 | 35.6 | 23.3 | 65.4 | 38.3 | 512.0 | 132.0 |
48 | 20/05/2016; 09:15 | 2.5 | 0.0 | 0.0 | - | - | - |
49 | 13/06/2016; 01:01 | 2.8 | 0.0 | 0.0 | - | - | - |
50 | 19/06/2016; 11:34 | 2.5 | 0.0 | 0.0 | - | - | - |
51 | 24/06/2016; 03:34 | 7.9 | 0.2 | 2.5 | - | - | - |
52 | 26/07/2016; 14:43 | 2.0 | 0.0 | 0.0 | - | - | - |
53 | 07/08/2016; 13:28 | 8.4 | 0.2 | 2.4 | - | - | - |
54 | 11/08/2016; 22:29 | 2.3 | 0.0 | 0.0 | - | - | - |
55 | 23/08/2016; 14:51 | 22.4 | 7.2 | 32.1 | 93.0 | 5.0 | 1.0 |
56 | 31/08/2016; 23:31 | 6.9 | 0.0 | 0.0 | - | - | - |
57 | 06/09/2016; 03:44 | 36.3 | 13.4 | 36.9 | * | 34.0 | 28.0 |
58 | 08/09/2016; 03:50 | 13.7 | 5.1 | 37.2 | 74.2 | 324.0 | 5.0 |
59 | 13/09/2016; 15:29 | 12.5 | 4.4 | 35.2 | 89.5 | 8.0 | 3.0 |
60 | 17/09/2016; 04:22 | 7.9 | 0.4 | 5.1 | - | - | - |
61 | 18/09/2016; 23:19 | 38.9 | 20.9 | 53.7 | 19.0 | 16.0 | 45.0 |
62 | 22/09/2016; 05:49 | 2.3 | 0.0 | 0.0 | - | - | - |
Mean (**) | 20.3 | 11.1 | 32.0 | ||||
Minimum (**) | 2.0 | 0.0 | 0.0 | ||||
Maximum (**) | 120.1 | 100.00 | 83.3 | ||||
Sum (**) | 1256.3 | 689.7 | |||||
Mean (***) | 32.5 | 19.4 | 50.4 | 56.0 | 294.9 | 52.1 | |
Minimum (***) | 8.1 | 1.6 | 17.5 | 13.3 | 1 | 1 | |
Maximum (***) | 120.1 | 100 | 83.3 | 95.2 | 1647 | 399 | |
Sum (***) | 1137.0 | 678.2 |
Parameter | Value | Lower Limit | Upper Limit | Unit of Measure |
---|---|---|---|---|
θr | 0.00 | 0 | 0.07 | cm3cm−3 |
θs | 0.58 | 0.57 | 0.59 | cm3cm−3 |
α | 0.09 | 0.07 | 0.11 | cm−1 |
n | 1.25 | 1.20 | 1.32 | - |
Ks | 3000 | 0.00 | 4000 | cm day−1 |
l | 0.5 | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water 2019, 11, 1378. https://doi.org/10.3390/w11071378
Palermo SA, Turco M, Principato F, Piro P. Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water. 2019; 11(7):1378. https://doi.org/10.3390/w11071378
Chicago/Turabian StylePalermo, Stefania Anna, Michele Turco, Francesca Principato, and Patrizia Piro. 2019. "Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate" Water 11, no. 7: 1378. https://doi.org/10.3390/w11071378
APA StylePalermo, S. A., Turco, M., Principato, F., & Piro, P. (2019). Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water, 11(7), 1378. https://doi.org/10.3390/w11071378