Meiofaunal Dynamics and Heterogeneity along Salinity and Trophic Gradients in a Mediterranean Transitional System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Field Surveysand Sample Treatment
2.3. Meiofaunal Analysis
2.4. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Meiofauna
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardone, F.; Corriero, G.; Fianchini, A.; Gravina, M.F.; Nonnis Marzano, C. Biodiversity of transitional waters: Species composition and comparative analysis of hard bottom communities from south-eastern Italian coast. J. Mar. Biol. Assoc. UK 2014, 94, 25–34. [Google Scholar] [CrossRef]
- Kandratavicius, N.; Muniz, P.; Venturini, N.; Giménez, L. Meiobenthic communities in permanently open estuaries and open/closed coastal lagoons of Uruguay (Atlantic coast of South America). Estuar. Coast. Shelf Sci. 2015, 163, 44–53. [Google Scholar] [CrossRef]
- Barnes, R.S.K. Coastal Lagoons: The Natural History of a Neglected Habitat; Cambridge University Press: Cambridge, UK, 1980; pp. 1–180. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Phys. Chem. Earth 2011, 36, 160–166. [Google Scholar]
- Magni, P.; Tagliapietra, D.; Lardicci, C.; Balthis, L.; Castelli, A.; Como, S.; Frangipane, G.; Giordani, G.; Hyland, J.; Maltagliati, F.; et al. Animal-sediment relationships: Evaluating the ‘Pearson-Rosenberg paradigm’ in Mediterranean coastal lagoons. Mar. Pollut. Bull. 2009, 58, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Armynot du Châtelet, E.; Bout-Roumazeilles, V.; Coccioni, R.; Frontalini, F.; Francescangeli, F.; Margaritelli, G.; Rettori, R.; Spagnoli, F.; Semprucci, F.; Trentesaux, A.; et al. Environmental control on a land-sea transitional setting–Integrated microfaunal, sedimentological, and geochemical approaches. Environ. Earth Sci. 2016, 75, 123. [Google Scholar] [CrossRef]
- Bouchet, V.M.P.; Goberville, E.; Frontalini, F. Benthic foraminifera to assess Ecological Quality Status in Italian transitional waters. Ecol. Indic. 2018, 84, 130–139. [Google Scholar] [CrossRef]
- Gambi, C.; Totti, C.; Manini, E. Impact of organic loads and environmental gradients on microphytobenthos and meiofaunal distribution in a coastal lagoon. Chem. Ecol. 2003, 19, 207–223. [Google Scholar] [CrossRef]
- Moens, T.; Braeckman, U.; Derycke, S.; Fonseca, G.; Gallucci, F.; Ingels, J.; Leduc, D.; Vanaverbeke, J.; Van Colen, C.; Vanreusel, A.; et al. Ecology of free-living marine nematodes. In Handbook of Zoology: Gastrotricha, Cycloneuralia and Gnathifera Nematoda; Schmidt-Rhaesa, A., Ed.; deGruyter: Berlin, Germany, 2013; Volume 2, pp. 109–152. [Google Scholar]
- Boufahja, F.; Semprucci, F.; Beyrem, H. An experimental protocol to select nematode species from an entire community using progressive sedimentary enrichment. Ecol. Indic. 2016, 60, 292–309. [Google Scholar] [CrossRef]
- Baldrighi, E.; Semprucci, F.; Franzo, A.; Cvitkovic, I.; Bogner, D.; Despalatovic, M.; Berto, D.; MalgorzataFormalewicz, M.; Scarpato, A.; Frapiccini, E.; et al. Meiofaunal communities in four Adriatic ports: Baseline data for risk assessment in ballast water management. Mar. Pollut. Bull. 2018. [Google Scholar] [CrossRef]
- Yang, X.; Lin, C.; Song, X.; Xu, M.; Yang, H. Effects of artificial reefs on the meiofaunal community and benthic environment—A case study in Bohai Sea, China. Mar. Pollut. Bull. 2019, 140, 179–187. [Google Scholar] [CrossRef]
- Semprucci, F.; Balsamo, M. Free-living Marine Nematodes as Bioindicators: Past, Present and Future Perspectives. Trends Environ. Sci. 2014, 6, 17–36. [Google Scholar]
- Colangelo, M.A.; Ceccherelli, V.U. Meiofaunal recolonization of azoicsediment in a Po Delta lagoon (Sacca di Goro). Ital. J. Zool. 1994, 61, 335–342. [Google Scholar]
- Villano, N.; Warwick, R.M. Meiobenthic communities associated with the seasonal cycle of growth and decay of Ulva rigidaArardh in the Palude Della Rosa, Lagoon of Venice. Estuar. Coast. Shelf. Sci. 1995, 4, 181–194. [Google Scholar] [CrossRef]
- Guerrini, A.; Colangelo, M.A.; Ceccherelli, V.U. Recolonization patterns of meiobenthic communities in brackish vegetated and unvegetated habitats after induced hypoxia/anoxia. Hydrobiologia 1998, 375–376, 73–87. [Google Scholar] [CrossRef]
- Pusceddu, A.; Gambi, C.; Manini, E.; Danovaro, R. Trophic state, ecosystem efficiency and biodiversity of transitional aquatic ecosystems: Analysis of environmental quality based on different benthic indicators. Chem. Ecol. 2007, 23, 1–11. [Google Scholar] [CrossRef]
- Cibic, T.; Franzo, A.; Celussi, M.; Fabbro, C.; Del Negro, P. Benthic ecosystem functioning in hydrocarbon and heavy-metal contaminated sediments of an Adriatic lagoon. Mar. Ecol. Prog. Ser. 2012, 458, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Semprucci, F.; Balsamo, M.; Sandulli, R. Assessment of the Ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecol. Indic. 2016, 67, 451–457. [Google Scholar] [CrossRef]
- Semprucci, F.; Facca, C.; Ferrigno, F.; Balsamo, M.; Sfriso, A.; Sandulli, R. Biotic and abiotic factors affecting seasonal and spatial distribution of meiofauna and macrophytobenthos in transitional coastal waters. Estuar. Coast. Shelf Sci. 2019, 219, 328–340. [Google Scholar] [CrossRef]
- Fabbrocini, A.; Guarino, A.; Scirocco, T.; Franchi, M.; D’Adamo, R. Integrated biomonitoring assessment of the Lesina Lagoon (Southern Adriatic Coast, Italy): Preliminary results. Chem. Ecol. 2005, 21, 479–489. [Google Scholar] [CrossRef]
- Frontalini, F.; Semprucci, F.; Armynot du Châtelet, E.; Francescangeli, F.; Margaritelli, G.; Rettori, R.; Spagnoli, F.; Balsamo, M.; Coccioni, R. Biodiversity trends of the meiofauna and foraminifera assemblages of Lake Varano (southern Italy). Proc. Biol. Soc. Wash. 2014, 127, 7–22. [Google Scholar] [CrossRef]
- Semprucci, F.; Balsamo, M.; Frontalini, F. The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): Ecology and biodiversity patterns. Sci. Mar. 2014, 78, 579–588. [Google Scholar] [CrossRef]
- Mirto, S.; La Rosa, T.; Morcciaro, G.; Costa, K.; Sara, G.; Mazzola, A. Meiofauna and benthic microbial biomass in a semi-enclosed Mediterranean marine system (Stagnone of Marsala, Italy). Chem. Ecol. 2004, 20, S387–S396. [Google Scholar] [CrossRef]
- Manini, E.; Fiordelmondo, C.; Gambi, M.C.; Pusceddu, A.; Danovaro, R. Benthic microbial loop functioning in coastal lagoons: A comparative approach. Oceanol. Acta 2003, 26, 27–38. [Google Scholar] [CrossRef]
- Barnes, N.; Bamber, R.; Moncrieff, C.; Sheader, M.; Ferrero, T. Meiofauna in closed coastal saline lagoons in the United Kingdom: Structure and biodiversity of nematode assemblage. Estuar. Coast. Shelf Sci. 2008, 79, 328–340. [Google Scholar] [CrossRef]
- Abbiati, M.; Mistri, M.; Bartoli, M.; Ceccherelli, V.U.; Colangelo, M.A.; Ferrari, C.R.; Giordani, G.; Munari, C.; Nizzoli, D.; Ponti, M.; et al. Trade-off betweenconservation and exploitation of the transitional water ecosystems of the northernAdriatic Sea. Chem. Ecol. 2010, 26, 105–119. [Google Scholar] [CrossRef]
- Magni, P.; Micheletti, S.; Casu, D.; Floris, A.; Giordani, G.; Petrov, A.; De Falco, G.; Castelli, A. Relationships between chemical characteristics of sediments and macrofaunal communities in the Cabras lagoon (western Mediterranean, Italy). Hydrobiologia 2005, 550, 109–115. [Google Scholar] [CrossRef]
- Magni, P.; Rajagopal, S.; van der Velde, G.; Fenzi, G.; Kassenberg, J.; Vizzini, S.; Mazzola, A.; Giordani, G. Sediment features, macrozoobenthic assemblages and trophic relationships (δ13C and δ15N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy). Mar. Pollut. Bull. 2008, 57, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Foti, A.; Fenzi, G.; Di Pippo, F.; Gravina, M.F.; Magni, P. Testing the saprobity hypothesis in a Mediterranean lagoon: Effects of confinement and organic enrichment on benthic communities. Mar. Environ. Res. 2014, 99, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ferrarin, C.; Umgiesser, G. Hydrodynamic modeling of a coastal lagoon: The Cabras lagoon in Sardinia, Italy. Ecol. Model. 2005, 188, 340–357. [Google Scholar] [CrossRef]
- Molinaroli, E.; Guerzoni, S.; De Falco, G.; Sarretta, A.; Cucco, A.; Como, S.; Simeone, S.; Perilli, A.; Magni, P. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: The lagoons of Venice and Cabras, Italy. Sediment. Geol. 2009, 219, 196–207. [Google Scholar] [CrossRef]
- Bartoli, M.; Longhi, D.; Nizzoli, D.; Como, S.; Magni, P.; Viaroli, P. Short term effects of hypoxia and bioturbation on solute fluxes, denitrification and buffering capacity in a shallow dystrophic pond. J. Exp. Mar. Biol. Ecol. 2009, 381, 105–113. [Google Scholar] [CrossRef]
- Specchiulli, A.; Cilenti, L.; D’Adamo, R.; Fabbrocini, A.; Guo, W.; Huang, L.; Lugliè, A.; Padedda, B.M.; Scirocco, T.; Magni, P. Dissolved organic matter dynamics in Mediterranean lagoons: The relationship between DOC and CDOM. Mar. Chem. 2018, 202, 37–48. [Google Scholar] [CrossRef]
- Pulina, S.; Padedda, B.M.; Satta, C.T.; Sechi, N.; Lugliè, A. Long-term phytoplankton dynamics in a Mediterranean Eutrophic lagoon (Cabras Lagoon, Italy). Plant Biosyst. 2011, 146, 259–272. [Google Scholar] [CrossRef]
- Pulina, S.; Padedda, B.M.; Sechi, N.; Lugliè, A. The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: A case study of Cabras lagoon (Sardinia, Italy). Sci. Mar. 2012, 75, 111–120. [Google Scholar] [CrossRef]
- Magni, P.; Micheletti, S.; Casu, D.; Floris, A.; De Falco, G.; Castelli, A. Macrofaunal community structure and distribution in a muddy coastal lagoon. Chem. Ecol. 2004, 20, S397–S407. [Google Scholar] [CrossRef]
- Satta, C.T.; Anglès, S.; Garcés, E.; Sechi, N.; Pulina, S.; Padedda, B.M.; Stacca, D.; Lugliè, A. Dinoflagellate cyst assemblages in surface sediments from three shallow Mediterranean lagoons (Sardinia, North Western Mediterranean Sea). Estuaries Coasts 2014, 37, 646–663. [Google Scholar] [CrossRef]
- Como, S.; Magni, P.; Van Der Velde, G.; Blok, F.S.; Van De Steeg, M.F.M. Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon. Estuar. Coast. Shelf Sci. 2012, 115, 300–308. [Google Scholar] [CrossRef]
- Cucco, A.; Sinerchia, M.; Le Francois, C.; Magni, P.; Ghezzo, M.; Umgiesser, G.; Perilli, A.; Domenici, P. Coupled empirical and numerical model of fish response to environmental changes. Ecol. Model. 2012, 237–238, 132–141. [Google Scholar] [CrossRef]
- Como, S.; Magni, P.; Casu, D.; Floris, A.; Giordani, G.; Natale, S.; Fenzi, G.A.; Signa, G.; De Falco, G. Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Oristano (Sardinia, Italy). Mar. Pollut. Bull. 2007, 54, 733–744. [Google Scholar] [CrossRef]
- Como, S.; Magni, P. Temporal changes of a macrobenthic assemblage in harsh lagoon sediments. Estuar. Cost. Shelf Sci. 2009, 83, 638–646. [Google Scholar] [CrossRef]
- Sandulli, R.; De Leonardis, C.; Vanaverbeke, J. Meiobenthic communities in the shallow subtidal of three Italian Marine Protected Areas. Ital. J. Zool. 2010, 77, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Curini-Galletti, M.; Artois, T.; Delogu, V.; De Smet, W.H.; Fontaneto, D.; Jondelius, U.; Leasi, F.; Martinez, A.; Meyer-Wachsmuth, I.; Nilsson, K.S.; et al. Patterns of Diversity in Soft-Bodied Meiofauna: Dispersal Ability and Body Size Matter. PLOS ONE 2012, 7, e33801. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, F.; Ellwood, N.T.W.; Gismondi, A.; Bruno, L.; Rossi, F.; Magni, P.; De Philippis, P. Characterization of biofilm-forming cyanobacteria for exopolysaccharide production and potential biotechnological applications. J. Appl. Phycol. 2013, 25, 1697–1708. [Google Scholar] [CrossRef]
- Di Pippo, F.; Magni, P.; Congestri, R. Microphytobenthic biomass, diversity and exopolymeric substances in a shallow dystrophic coastal lagoon. J. Mar. Microbiol. 2018, 2, 6–12. [Google Scholar]
- Magni, P.; Como, S.; Cucco, A.; De Falco, G.; Domenici, P.; Ghezzo, M.; Lefrançois, C.; Simeone, S.; Perilli, A. A Multidisciplinary and Ecosystemic Approach in the Oristano Lagoon-Gulf System (Sardinia, Italy) as a Tool in Management Plans. Transit. Waters Bull. 2008, 2, 41–62. [Google Scholar]
- Danovaro, R.; Gambi, M.C.; Mirto, S.; Sandulli, R.; Ceccherelli, V.U. Meiofauna. Biol. Mar. Mediterr. 2004, 11, 55–97. [Google Scholar]
- Higgins, R.P.; Thiel, H. Introduction to the Study of Meiofauna; Smithsonian Institution Press: Washington, DC, USA, 1988; pp. 1–488. [Google Scholar]
- Semprucci, F.; Sbrocca, C.; Rocchi, M.; Balsamo, M. Temporal changes of the meiofaunal assemblage as a tool for the assessment of the ecological quality status. J. Mar. Biol. Assoc. UK 2015, 95, 247–254. [Google Scholar] [CrossRef]
- Pfannkuche, O.; Thiel, H. Sample processing. In Introduction to the Study of Meiofauna; Higgins, R.P., Thiel, H., Eds.; Smithsonian Institute: Washington, DC, USA, 1988; pp. 134–145. [Google Scholar]
- Raffaelli, D.G.; Mason, D.F. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar. Pollut. Bull. 1981, 12, 158–163. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2001, 26, 32–46. [Google Scholar]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation; Plymouth Marine Laboratory: Plymouth, UK, 2001. [Google Scholar]
- De Falco, G.; Magni, P.; Teräsvuori, L.; Matteucci, G. Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, west Mediterranean). Chem. Ecol. 2004, 20, S367–S377. [Google Scholar] [CrossRef]
- Magni, P.; De Falco, G.; Como, S.; Casu, D.; Floris, A.; Petrov, A.N.; Castelli, A.; Perilli, A. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: The case study of the Cabras lagoon (Sardinia, Italy). Mar. Pollut. Bull. 2008, 56, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Smol, K.A.; Willems, J.C.; Govaere, R.; Sandee, A.J.J. Composition, distributionand biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 1994, 282–283, 197–217. [Google Scholar] [CrossRef]
- Jouili, S.; Essid, N.; Semprucci, F.; Boufahja, F.; Nasri, A.; Beyrem, H. Environmental quality assessment of El Bibane lagoon (Tunisia) using taxonomical and functional diversity of meiofauna and nematodes. J. Mar. Biol. Assoc. UK 2017, 97, 1593–1603. [Google Scholar] [CrossRef]
- McArthur, V.E.; Koutsoubas, D.; Lampadariou, N.; Dounas, C. The meiofaunal community structure of a Mediterranean lagoon (Gialova lagoon, Ionian Sea). Helgol. Mar. Res. 2000, 54, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.S.; Adão, H.; Patrício, J.; Magalhães Neto, J.; Costa, M.J.; Marques, J.C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. UK 2009, 89, 1529–1540. [Google Scholar] [CrossRef]
- Watzin, M.C. Interactions among temporary and permanent meiofauna: Observations on the feeding and behaviour of selected taxa. Biol. Bull. 1985, 169, 397–416. [Google Scholar] [CrossRef]
- Vandekerkhove, J.; Martens, K.; Rossetti, G.; Mesquita-Joanes, F.; Namiotko, T. Extreme tolerance to environmental stress of sexual and parthenogenetic resting eggs of Eucypris virens (Crustacea, Ostracoda). Freshw. Biol. 2013, 58, 237–247. [Google Scholar] [CrossRef]
- Alvarez, F.; Ojeda, M. First record of a sea spider (Pycnogonida) from an anchialine habitat. Lat. Am. J. Aquat. Res. 2018, 46, 219–224. [Google Scholar] [CrossRef]
- Jaume, D.; Boxshall, G.A. Global diversity of cumaceans & tanaidaceans (Crustacea: Cumacea & Tanaidacea) in freshwater. Hydrobiologia 2008, 595, 225–230. [Google Scholar]
- Ateş, A.S.; Katağan, T.; Sezgin, M.; Acar, S. The Response of Apseudopsis latreillii (Milne-Edwards, 1828) (Crustacea, Tanaidacea) to Environmental Variables in the Dardanelles. Turk. J. Fish. Aquat. Sci. 2014, 14, 113–124. [Google Scholar] [CrossRef]
- Vanaverbeke, J.; Gheskiere, T.; Steyaert, M.; Vincx, M. Nematode assemblages from subtidal sandbanks in theSouthern Bight of the North Sea: Effect of smallsedimentological differences. J. Sea Res. 2002, 48, 197–207. [Google Scholar] [CrossRef]
- Semprucci, F.; Balsamo, M.; Appolloni, L.; Sandulli, R. Assessment of ecological quality status along the Apulian coasts (Eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar. Biodivers. 2018, 48, 105–115. [Google Scholar] [CrossRef]
Variable | PC 1 | PC 2 |
---|---|---|
Temperature | 0.17 | 0.71 |
Salinity | 0.24 | 0.59 |
Dissolved oxygen | 0.004 | −0.12 |
Water content | 0.49 | −0.27 |
OM | 0.50 | −0.22 |
Chlorophyll-a | 0.47 | 0.06 |
Phaeopigments | 0.45 | −0.12 |
Factors | Total Sum of Squares | Df | Mean Square | Pseudo-F | p | Pairwise |
---|---|---|---|---|---|---|
Sites | 2.72 | 2 | 1.36 | 6.36 | 0.0001 ** | C1 vs. C3 p = 0.0003 **; C2 vs. C3 p = 0.0006 ** |
Periods | 0.20 | 1 | 0.20 | 0.94 | 0.44 | |
Sites × Periods | 0.66 | 2 | 0.33 | 1.55 | 0.12 | |
Residual | 6.41 | 30 | 0.21 | |||
Total | 9.99 | 35 |
C1 vs. C2 | Av. Dissim. | Cont. % | Cum. % | Av.ab. C1 | Av.ab. C2 | C1 vs. C3 | Av. Dissim. | Cont. % | Cum. % | Av.ab. C1 | Av.ab. C3 | C2 vs. C3 | Av. Dissim. | Cont. % | Cum. % | Av.ab. C2 | Av.ab. C3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nematoda | 41.2 | 58.1 | 58.1 | 73.1 | 54.8 | Nematoda | 52.8 | 69.4 | 69.4 | 73.1 | 619 | Nematoda | 58.0 | 70.2 | 70.2 | 54.8 | 619 |
Copepoda | 13.4 | 18.9 | 77.0 | 17.5 | 20.3 | Copepoda | 12.5 | 16.4 | 85.8 | 17.5 | 89.8 | Copepoda | 13.0 | 15.8 | 85.9 | 20.3 | 89.8 |
Ostracoda | 9.4 | 13.2 | 90.3 | 1.3 | 19.4 | Ostracoda | 4.9 | 6.5 | 92.3 | 1.3 | 53.4 | Ostracoda | 5.6 | 6.8 | 92.8 | 19.4 | 53.4 |
Nauplii | 2.4 | 3.4 | 93.6 | 2.5 | 0.9 | Nauplii | 3.7 | 4.8 | 97.1 | 2.5 | 43.3 | Nauplii | 3.8 | 4.6 | 97.3 | 0.9 | 43.3 |
Halacaroidea | 1.7 | 2.3 | 96.0 | 0.8 | 1.8 | Plathelminthes | 0.9 | 1.2 | 98.3 | 1.0 | 6.3 | Plathelminthes | 0.9 | 1.0 | 98.4 | 0.6 | 6.3 |
Tanaidacea | 0.8 | 1.1 | 97.1 | 1.2 | 0.0 | Oligochaeta | 0.3 | 0.4 | 98.7 | 0.3 | 4.3 | Halacaroidea | 0.3 | 0.4 | 98.8 | 1.8 | 0.6 |
Plathelminthes | 0.5 | 0.8 | 97.9 | 1.0 | 0.6 | Tanaidacea | 0.2 | 0.3 | 99.0 | 1.2 | 0.1 | Oligochaeta | 0.3 | 0.4 | 99.2 | 0.3 | 4.3 |
Amphipoda | 0.3 | 0.5 | 98.3 | 0.7 | 0.0 | Amphipoda | 0.2 | 0.2 | 99.2 | 0.7 | 1.2 | Polychaeta | 0.2 | 0.2 | 99.4 | 0.4 | 2.1 |
Bivalvia | 0.3 | 0.4 | 98.8 | 0.1 | 0.7 | Polychaeta | 0.2 | 0.2 | 99.5 | 0.0 | 2.1 | Bivalvia | 0.2 | 0.2 | 99.6 | 0.7 | 0.5 |
Cladocera | 0.3 | 0.4 | 99.2 | 0.1 | 0.1 | Halacaroidea | 0.1 | 0.2 | 99.6 | 0.8 | 0.6 | Amphipoda | 0.1 | 0.1 | 99.8 | 0.0 | 1.2 |
Pycnogonida | 0.2 | 0.2 | 99.4 | 0.0 | 0.3 | Bivalvia | 0.1 | 0.2 | 99.8 | 0.1 | 0.5 | Insecta | 0.1 | 0.1 | 99.9 | 0.0 | 0.4 |
Oligochaeta | 0.2 | 0,.2 | 99.6 | 0.8 | 0.3 | Insecta | 0.1 | 0.1 | 99.9 | 0.0 | 0.4 | Pycnogonida | 0.0 | 0.1 | 99.9 | 0.3 | 0.0 |
Kinorhyncha | 0.1 | 0.2 | 99.8 | 0.1 | 0.0 | nectochaetes | 0.0 | 0.0 | 99.9 | 0.0 | 0.3 | nectochaetes | 0.0 | 0.0 | 100.0 | 0.0 | 0.3 |
Isopoda | 0.1 | 0.1 | 99.9 | 0.2 | 0.0 | Isopoda | 0.0 | 0.0 | 99.9 | 0.2 | 0.0 | Cladocera | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 |
Polychaeta | 0.1 | 0.1 | 100.0 | 0.0 | 0.4 | Cladocera | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 | Nemertina | 0.0 | 0.0 | 100.0 | 0.0 | 0.1 |
Nemertina | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | Kinorhyncha | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 | Tanaidacea | 0.0 | 0.0 | 100.0 | 0.0 | 0.1 |
Insecta | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | Nemertina | 0.0 | 0.0 | 100.0 | 0.0 | 0.1 | Kinorhyncha | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 |
nectochaetes | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | Pycnogonida | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | Isopoda | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 |
Variable | Factors | Total Sum of Squares | df | Mean Square | Pseudo-F | p | Pairwise |
---|---|---|---|---|---|---|---|
Total abundance | Sites | 0.54 | 2 | 0.27 | 10.74 | 0.0003 ** | C1 vs. C3 p = 0.01 *; C2 vs. C3 p < 0.01 ** |
Periods | 0.01 | 1 | 0.01 | 0.46 | 0.57 | ||
Sites × Periods | 0.11 | 2 | 0.06 | 2.2 | 0.11 | ||
Residual | 0.75 | 30 | 0.03 | ||||
Total | 1.41 | 35 | |||||
number of taxa | Sites | 0.49 | 2 | 0.24 | 6.15 | 0.0023 ** | C2 vs. C3 p < 0.05 * |
Periods | 0.03 | 1 | 0.03 | 0.76 | 0.42 | ||
Sites × Periods | 0.02 | 2 | 0.01 | 0.21 | 0.76 | ||
Residual | 1.19 | 30 | 0.04 | ||||
Total | 1.73 | 35 | |||||
Shannon-diversity | Sites | 0.08 | 2 | 0.04 | 0.64 | 0.8 | - |
Periods | 0.07 | 1 | 0.07 | 1.11 | 0.31 | ||
Sites × Periods | 0.16 | 2 | 0.08 | 1.29 | 0.22 | ||
Residual | 1.9 | 30 | 0.06 | ||||
Total | 2.22 | 35 | |||||
Pielou-evenness | Sites | 0.31 | 2 | 0.16 | 2.52 | 0.0166 * | C1 vs. C3 p < 0.05 * |
Periods | 0.17 | 1 | 0.17 | 2.71 | 0.0356 * | ||
Sites × Periods | 0.19 | 2 | 0.1 | 1.56 | 0.13 | ||
Residual | 1.86 | 30 | 0.06 | ||||
Total | 2.53 | 35 | |||||
Ne/Co ratio | Sites | 1.16 | 2 | 0.58 | 3 | 0.02 * | C1 vs. C3 p < 0.01 ** |
Periods | 0.24 | 1 | 0.24 | 1.25 | 0.28 | ||
Sites × Periods | 0.71 | 2 | 0.36 | 1.83 | 0.13 | ||
Residual | 5.81 | 30 | 0.19 | ||||
Total | 7.92 | 35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semprucci, F.; Gravina, M.F.; Magni, P. Meiofaunal Dynamics and Heterogeneity along Salinity and Trophic Gradients in a Mediterranean Transitional System. Water 2019, 11, 1488. https://doi.org/10.3390/w11071488
Semprucci F, Gravina MF, Magni P. Meiofaunal Dynamics and Heterogeneity along Salinity and Trophic Gradients in a Mediterranean Transitional System. Water. 2019; 11(7):1488. https://doi.org/10.3390/w11071488
Chicago/Turabian StyleSemprucci, Federica, Maria Flavia Gravina, and Paolo Magni. 2019. "Meiofaunal Dynamics and Heterogeneity along Salinity and Trophic Gradients in a Mediterranean Transitional System" Water 11, no. 7: 1488. https://doi.org/10.3390/w11071488
APA StyleSemprucci, F., Gravina, M. F., & Magni, P. (2019). Meiofaunal Dynamics and Heterogeneity along Salinity and Trophic Gradients in a Mediterranean Transitional System. Water, 11(7), 1488. https://doi.org/10.3390/w11071488