Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. Data Preprocessing
2.2. Technical Program
3. Results and Analysis
3.1. Optimum Best Corrected Data Time Scale
3.2. Optimizing Coefficients as and bs
4. Discussion
4.1. Influence of Data Processing Mode On the Research Results
4.2. Random Errors and Data Quality Problems
4.3. Optimization of Coefficients as and bs in Practice
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Djaman, K.; Irmak, S.; Kabenge, I.; Futakuchi, K. Evaluation of FAO-56 Penman-Monteith Model with Limited Data and the Valiantzas Models for Estimating Grass-Reference Evapotranspiration in Sahelian Conditions. J. Irrig. Drain. Eng. 2016, 142, 04016044. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Zhang, X.; Ding, J. Applicability of FAO56 and ASCE Penman-Monteith equations for reference crop evapotranspiration calculation on turf grass. Trans. Chin. Soc. Agric. Eng. 2009, 25, 32–37. [Google Scholar]
- Shunjun, H.; Pan, Y.; Kang, S.; Song, Y.; Tian, C. Comparison of the reference crop evapotranspiration estimated by the Penman-Monteith and Penman methods in Tarim River Basin. Trans. Chin. Soc. Agric. Eng. 2005, 21, 30–35. [Google Scholar]
- Shizhang, P.; Junzeng, X.; Jiali, D. Influence of as and bs values on determination of reference crop evapotranspiration by Penman-Monteith formula. J. Irrig. Drain. 2006, 25, 5–8. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Yao, N.; Li, Y.; Sun, C. Effects of changing climate on reference crop evapotranspiration over 1961–2013 in Xinjiang, China. Theor. Appl. Clim. 2018, 131, 349–362. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Zhong, X.; Li, Y.; Yuan, X.; Cao, J. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agric. Water Manag. 2017, 184, 145–155. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, M.; Zhang, H.; Deng, Z.; Liu, C.; Jiang, M. Sensitivity Analysis of the Reference Crop Evapotranspiration to Meteorological Factors. J. Irrig. Drain. Eng. 2017, 36, 94–99. [Google Scholar]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Szczypta, C.; Calvet, J.C.; Boulet, G. Using the dual approach of FAO-56 combined with multi-sensor remote sensing for estimating the regional evapotranspiration. In Proceedings of the 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 17–19 March 2014; pp. 373–378. [Google Scholar]
- Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Sci. Rep. 2017, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Wang, Y.; Xu, P.; Fu, B.; Li, C. Adaptation of Hargreaves Methods and Prediction of Reference Crop Evapotranspiration in Minjiang River Headwater Region. Trans. Chin. Soc. Agric. Mach. 2018, 49, 273–281. [Google Scholar]
- Irmak, S.; Irmak, A.; Jones, J.; Howell, T.A.; Jacobs, J.M.; Allen, R.G.; Hoogenboom, G. Predicting daily net radiation using minimum climatological data. J. Irrig. Drain. Eng. 2003, 129, 256–269. [Google Scholar] [CrossRef]
- Nandagiri, L.; Kovoor, G.M. Sensitivity of the Food and Agriculture Organization Penman–Monteith evapotranspiration estimates to alternative procedures for estimation of parameters. J. Irrig. Drain. Eng. 2005, 131, 238–248. [Google Scholar] [CrossRef]
- Yoder, R.E.; Odhiambo, L.O.; Wright, W.C. Effects of vapor-pressure deficit and net-irradiance calculation methods on accuracy of standardized Penman-Monteith equation in a humid climate. J. Irrig. Drain. Eng. 2005, 131, 228–237. [Google Scholar] [CrossRef]
- Ju, X.; Tu, Q.; Li, Q. Discussion on the climatological calculation of solar radiation. J. Nanjing Inst. Meteorol. 2005, 28, 516–521. [Google Scholar]
- Yang, G.; Wang, Z.; Wang, H.; Jia, Y. Potential evapotranspiration evolution rule and its sensitivity analysis in Haihe River basin. Adv. Water Sci. 2009, 20, 409–415. [Google Scholar]
- Tamm, T. Effect of Meteorological Conditions and Water Management on Hydrological Processes in Agricultural Fields: Parameterization and Modeling of Estonian Case Studies. Master’s Thesis, Helsinki University of Technology, Helsinki, Finland, 2002. [Google Scholar]
- Kjærsgaard, J.H.; Plauborg, F.; Hansen, S. Comparison of models for calculating daytime long-wave irradiance using long term data set. Agric. For. Meteor. 2007, 143, 49–63. [Google Scholar] [CrossRef]
- Lu, Y.; Hong, T.; Lu, J.; Wen, H. Spatial-temporal variation characteristics of gross solar radiation in Anhui Province from 1961 to 2010. Meteor. Sci. Tech. 2016, 44, 769–775. [Google Scholar]
- Cui, R.X. The analysis of spatiotemporal variation characteristics of global solar radiation in Shandong Province. J. Nat. Res. 2014, 29, 1780–1791. [Google Scholar]
- Zhao, J.; Li, W.P.; Li, F. Climatological calculation and analysis of global solar radiation in the Loess Plateau. Arid Zone Res. 2008, 25, 53–58. [Google Scholar] [CrossRef]
- Du, D.; Mao, H.; Liu, A.; Pan, W. The climatological calculation and distributive character of global solar radiation in Guangdong province. Resour. Sci. 2003, 25, 66–70. [Google Scholar]
- Miao, M.; Yan, H.; Yan, Z. The distribution characteristics of total solar radiation in Jiangsu Province. J. Meteorol. Sci. 2012, 32, 269–274. [Google Scholar]
- Ma, J.; Luo, Y.; Shen, Y.; Liang, S.; Li, H. Regional long-term trend of ground solar radiation in China over the past 50 years. Sci. China Earth Sci. 2013, 56, 1242–1253. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Zheng, D.; Yang, Q. Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agric. Water Manag. 2008, 95, 77–84. [Google Scholar] [CrossRef]
- Hu, Q.F.; Yang, D.W.; Wang, Y.T.; Yang, H. Effects of Angstrom coefficients on ET (0) estimation and the applicability of FAO recommended coefficient values in China. Adv. Water Sci. 2010, 21, 644–652. [Google Scholar]
- Liu, X.; Mei, X.; Li, Y.; Wang, Q.; Zhang, Y.; Porter, J.R. Variation in reference crop evapotranspiration caused by the Ångström–Prescott coefficient: Locally calibrated versus the FAO recommended. Agric. Water Manag. 2009, 96, 1137–1145. [Google Scholar] [CrossRef]
- Wen, C.; Ying, X.; Chunfeng, D. Research on applicability of solar radiation parametric model in Anhui province. Chin. Agric. Sci. Bull. 2014, 30, 207–212. [Google Scholar]
- Yuan, H.; Yuan, X.; Tang, G.; Cui, Y.; Jiang, S. Correction of parameters in Angstrom formula and analysis of total solar radiation characteristics in Huaibei plain. J. Drain. Irrig. Mach. Eng. 2018, 36, 426–432. [Google Scholar]
- Li, M.; Mei, X.; Zhong, X.; Liu, X.; Hao, W.; Han, H.; Liu, W. Parameterization of Ångström-Prescott radiation model in Yunnan province. Trans. Chin. Soc. Agric. Eng. 2012, 28, 100–105. [Google Scholar]
- Chen, J.L.; He, L.; Wen, Z.F.; Lv, M.Q.; Yi, X.X.; Wu, S.J. A general empirical model for estimation of solar radiation in Yangtze River basin. Appl. Ecol. Environ. Res. 2018, 16, 1471–1482. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Zhong, X.; Zhao, C.; Jensen, J.R.; Zhao, Y. Towards increasing availability of the Ångström–Prescott radiation parameters across China: Spatial trend and modeling. Energy Convers Manag. 2014, 87, 975–989. [Google Scholar] [CrossRef]
Group ID | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Time Scale |
---|---|---|---|---|---|---|---|---|
Validation data set | 2011–2015 | 2006–2010 | 2001–2005 | 1996–2000 | 1991–1995 | 1986–1990 | 1981–1985 | 5 y |
Correction data set | 2010–2006 | 2005–2001 | 2000–1996 | 1995–1991 | 1990–1986 | 1985–1981 | 1980–1976 | 5 y |
2010–2001 | 2005–1996 | 2000–1991 | 1995–1986 | 1990–1981 | 1985–1976 | 1980–1971 | 10 y | |
2010–1996 | 2005–1991 | 2000–1986 | 1995–1981 | 1990–1976 | 1985–1971 | 1980–1966 | 15 y | |
2010–1991 | 2005–1986 | 2000–1981 | 1995–1976 | 1990–1971 | 1985–1966 | 1980–1961 | 20 y | |
2010–1986 | 2005–1981 | 2000–1976 | 1995–1971 | 1990–1966 | 1985–1961 | 25 y | ||
2010–1981 | 2005–1976 | 2000–1971 | 1995–1966 | 1990–1961 | 30 y | |||
2010–1976 | 2005–1971 | 2000–1966 | 1995–1961 | 35 y | ||||
2010–1971 | 2005–1966 | 2000–1961 | 40 y | |||||
2010–1966 | 2005–1961 | 45 y | ||||||
2010–1961 | 50 y |
Group ID. | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Time Scale |
---|---|---|---|---|---|---|---|---|
Validation data set | 2011–2015 | 2006–2010 | 2001–2005 | 1996–2000 | 1991–1995 | 1986–1990 | 1981–1985 | 5 y |
Relative error range of Rs_c from as and bs recommended by FAO | 1–62% | 1–60% | 1–61% | 1–70% | 1–85% | 1–93% | 1–84% | 5 y |
Relative error range of Rs_c from as and bs by correction data set | 1–22% | 1–19% | 1–23% | 1–30% | 1–27% | 1–34% | 1–30% | 5 y |
1–24% | 1–25% | 1–25% | 1–30% | 1–28% | 1–34% | 1–32% | 10 y | |
1–24% | 1–28% | 1–21% | 1–24% | 1–28% | 1–33% | 1–37% | 15 y | |
1–25% | 1–28% | 1–24% | 1–24% | 1–28% | 1–34% | 1–39% | 20 y | |
1–26% | 1–25% | 1–21% | 1–25% | 1–28% | 1–34% | 25 y | ||
1–26% | 1–24% | 1–22% | 1–24% | 1–30% | 30 y | |||
1–26% | 1–24% | 1–22% | 1–24% | 35 y | ||||
1–26% | 1–24% | 1–25% | 40 y | |||||
1–26% | 1–23% | 45 y | ||||||
1–26% | 50 y |
Group ID | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Time Scale |
---|---|---|---|---|---|---|---|---|
Validation data set | 2011–2015 | 2006–2010 | 2001–2005 | 1996–2000 | 1991–1995 | 1986–1990 | 1981–1985 | 5 y |
Range value of relative error | 2% | 1% | 2% | 3% | 1% | 2% | 2% | 5 y |
2% | 1% | 2% | 2% | 2% | 2% | 3% | 10 y | |
2% | 1% | 2% | 2% | 1% | 2% | 2% | 15 y | |
2% | 2% | 1% | 2% | 2% | 3% | 3% | 20 y |
Region ID | January | February | March | April | May | June | July | August | September | October | November | December | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | as | bs | |
A1 | 0.25 | 0.50 | 0.14 | 0.65 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
A2 | 0.25 | 0.50 | 0.25 | 0.50 | 0.19 | 0.58 | 0.19 | 0.58 | 0.25 | 0.50 | 0.19 | 0.58 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
A3 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.19 | 0.56 | 0.19 | 0.56 | 0.25 | 0.50 | 0.25 | 0.50 |
A4 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 | 0.17 | 0.58 |
B1 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
B2 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.24 | 0.46 | 0.24 | 0.46 | 0.25 | 0.50 | 0.24 | 0.46 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
B3 | 0.22 | 0.49 | 0.22 | 0.49 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.22 | 0.49 | 0.25 | 0.50 | 0.22 | 0.49 | 0.25 | 0.50 |
C1 | 0.27 | 0.34 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.27 | 0.34 | 0.27 | 0.34 | 0.25 | 0.50 | 0.27 | 0.34 | 0.25 | 0.50 | 0.27 | 0.34 | 0.27 | 0.34 |
C2 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 | 0.22 | 0.49 |
C3 | 0.22 | 0.47 | 0.22 | 0.47 | 0.25 | 0.50 | 0.25 | 0.50 | 0.22 | 0.47 | 0.22 | 0.47 | 0.22 | 0.47 | 0.22 | 0.47 | 0.25 | 0.50 | 0.22 | 0.47 | 0.22 | 0.47 | 0.22 | 0.47 |
C4 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 | 0.20 | 0.51 |
D1 | 0.26 | 0.32 | 0.26 | 0.32 | 0.26 | 0.32 | 0.25 | 0.50 | 0.25 | 0.50 | 0.26 | 0.32 | 0.25 | 0.50 | 0.26 | 0.32 | 0.26 | 0.32 | 0.26 | 0.32 | 0.26 | 0.32 | 0.26 | 0.32 |
D2 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 | 0.21 | 0.44 |
D3 | 0.17 | 0.55 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.17 | 0.55 | 0.17 | 0.55 | 0.17 | 0.55 | 0.17 | 0.55 | 0.17 | 0.55 | 0.17 | 0.55 | 0.17 | 0.55 |
D4 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.21 | 0.54 | 0.21 | 0.54 | 0.21 | 0.54 | 0.21 | 0.54 | 0.21 | 0.54 | 0.21 | 0.54 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
E1 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 | 0.15 | 0.59 |
E2 | 0.25 | 0.50 | 0.25 | 0.50 | 0.19 | 0.49 | 0.19 | 0.49 | 0.19 | 0.49 | 0.19 | 0.49 | 0.19 | 0.49 | 0.19 | 0.49 | 0.19 | 0.49 | 0.25 | 0.50 | 0.19 | 0.49 | 0.19 | 0.49 |
E3 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 |
E4 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 | 0.10 | 0.67 |
E5 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 | 0.15 | 0.62 |
E6 | 0.13 | 0.66 | 0.13 | 0.66 | 0.13 | 0.66 | 0.13 | 0.66 | 0.13 | 0.66 | 0.25 | 0.50 | 0.13 | 0.66 | 0.13 | 0.66 | 0.25 | 0.50 | 0.25 | 0.50 | 0.13 | 0.66 | 0.13 | 0.66 |
F1 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.25 | 0.50 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 | 0.16 | 0.51 |
F2 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 | 0.16 | 0.65 |
F3 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 | 0.13 | 0.70 |
F4 | 0.14 | 0.83 | 0.14 | 0.83 | 0.25 | 0.50 | 0.14 | 0.83 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.14 | 0.83 | 0.14 | 0.83 | 0.25 | 0.50 | 0.25 | 0.50 | 0.14 | 0.83 |
F5 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.23 | 0.49 | 0.25 | 0.50 | 0.23 | 0.49 |
G1 | 0.25 | 0.50 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.16 | 0.56 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
G2 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.16 | 0.63 | 0.25 | 0.50 | 0.16 | 0.63 |
G3 | 0.25 | 0.50 | 0.25 | 0.50 | 0.29 | 0.37 | 0.29 | 0.37 | 0.29 | 0.37 | 0.29 | 0.37 | 0.29 | 0.37 | 0.29 | 0.37 | 0.25 | 0.50 | 0.25 | 0.50 | 0.29 | 0.37 | 0.29 | 0.37 |
G4 | 0.25 | 0.50 | 0.33 | 0.29 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 |
H1 | 0.25 | 0.50 | 0.25 | 0.49 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.49 | 0.25 | 0.49 | 0.25 | 0.49 | 0.25 | 0.49 | 0.25 | 0.50 | 0.25 | 0.49 | 0.25 | 0.49 |
H2 | 0.25 | 0.50 | 0.27 | 0.44 | 0.25 | 0.50 | 0.27 | 0.44 | 0.27 | 0.44 | 0.27 | 0.44 | 0.27 | 0.44 | 0.27 | 0.44 | 0.25 | 0.50 | 0.27 | 0.44 | 0.27 | 0.44 | 0.27 | 0.44 |
H3 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 | 0.25 | 0.50 | 0.25 | 0.50 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 | 0.21 | 0.51 |
I1 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.50 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 | 0.25 | 0.60 |
I2 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.50 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 | 0.25 | 0.56 |
I3 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 | 0.24 | 0.57 |
I4 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 | 0.20 | 0.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Zhu, X.; Pan, Y.; Zhao, X.; Zhang, J. Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters. Water 2019, 11, 1706. https://doi.org/10.3390/w11081706
Xia X, Zhu X, Pan Y, Zhao X, Zhang J. Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters. Water. 2019; 11(8):1706. https://doi.org/10.3390/w11081706
Chicago/Turabian StyleXia, Xingsheng, Xiufang Zhu, Yaozhong Pan, Xizhen Zhao, and Jinshui Zhang. 2019. "Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters" Water 11, no. 8: 1706. https://doi.org/10.3390/w11081706
APA StyleXia, X., Zhu, X., Pan, Y., Zhao, X., & Zhang, J. (2019). Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters. Water, 11(8), 1706. https://doi.org/10.3390/w11081706