Comprehensive Evaluation and Source Apportionment of Potential Toxic Elements in Soils and Sediments of Guishui River, Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Analytical Methods
2.4. Pb Isotopic Measurements
2.5. Assessment Methods
2.5.1. Geo-Accumulation Index (Igeo)
2.5.2. Potential Ecological Risk Index (RI)
2.6. Statistical Analysis
3. Results and Discussion
3.1. General Properties of the Soils and Sediments
3.2. Concentration and Distribution of Potential Toxic Elements in the Soils and Sediments
3.3. Risk Assessment of Potential Toxic Elements
3.3.1. Geo-Accumulation Index
3.3.2. Potential Ecological Risk Index
3.4. Identification of Pollution Sources in Sediments and Soils
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis
3.4.3. Pb Isotopic Ratios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Zhang, Q. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Cobbina, S.J.; Chen, Y.; Zhou, Z.; Wu, X.; Zhao, T.; Zhang, Z.; Feng, W.; Wang, W.; Li, Q.; Wu, X. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater. 2015, 294, 109–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Shen, M.; Zeng, G. Heavy metals in soils and sediments from Dongting Lake in China: Occurrence, sources, and spatial distribution by multivariate statistical analysis. Environ. Sci. Pollut. Res. Int. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, B.; Li, J.; Yang, J.; Bai, F.; Dou, Y.; Yin, X. One hundred-year sedimentary record of heavy metal accumulation in the southeastern Liaodong Bay of China. Environ. Earth Sci. 2014, 71, 1073–1108. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, Y.; Christakos, G.; Liu, Y.; Yang, X. Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma 2019, 337, 359–367. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Xu, J.; Tia, Y.Z.; Zhang, Y.; Guo, C.S.; Shi, G.L.; Zhang, C.Y.; Feng, Y.C. Source apportionment of perfluorinated compounds (PFCs) in sediments: Using three multivariate factor analysis receptor models. J. Hazard. Mater. 2013, 260, 483–488. [Google Scholar] [CrossRef]
- Looi, L.J.; Aris, A.Z.; Yusoff, F.M.; Hashim, Z. Mercury contamination in the estuaries and coastal sediments of the Strait of Malacca. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef]
- Satapathy, D.R.; Panda, C.R. Spatio-temporal distribution of major and trace metals in estuarine sediments of Dhamra, Bay of Bengal, India--its environmental significance. Environ. Monit. Assess. 2015, 187, 4133. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, A.; Kalavrouziotis, I.K.; Varnavas, S.P. Geochemical investigations regarding the variability of metal pollution in the Amvrakikos Bay. Greece. Glob. Nest J. 2019, 21, 7–13. [Google Scholar]
- Das Sharma, S. Risk Assessment and Mitigation Measures on the Heavy Metal Polluted Water and Sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution 2019, 5, 161–178. [Google Scholar]
- Bertin, C.; Bourgm, A.C.M. Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities. Water Res. 1995, 29, 1729–1736. [Google Scholar] [CrossRef]
- Kabatapendias, A.; Pendias, H.K. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Kalnejais, L.H.; Martin, W.R.; Bothner, M.H. The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar. Chem. 2010, 121, 224–235. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Li, G.; Deng, H.; Luo, X. Contamination and source differentiation of Pb in park soils along an urban–rural gradient in Shanghai. Environ. Pollut. 2011, 159, 3536–3544. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef]
- Yi, W.; Hu, J.; Xiong, K.; Huang, X.; Duan, S. Distribution of Heavy Metals in Core Sediments from Baihua Lake. Procedia Environ. Sci. 2012, 16, 51–58. [Google Scholar] [Green Version]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef]
- Han, L.F.; Gao, B.; Lu, J.; Zhou, Y.; Xu, D.; Gao, L.; Sun, K. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China. Ecotoxicol. Environ. Saf. 2017, 144, 321–329. [Google Scholar] [CrossRef]
- Gao, B.; Gao, L.; Zhou, Y.; Xu, D.; Zhao, X. Evaluation of the dynamic mobilization of vanadium in tributary sediments of the Three Gorges Reservoir after water impoundment. J. Hydrol. 2017, 551, 92–99. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- LSTR. Lake Survey Technical Regulations; Science Press of China: Beijing, China, 2015. [Google Scholar]
- Gao, B.; Liu, Y.; Sun, K.; Liang, X.; Pa, P.; Sheng, G.; Fu, J. Precise determination of cadmium and lead isotopic compositions in river sediments. Anal. Chim. Acta 2008, 612, 114–120. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211–212, 8–17. [Google Scholar] [CrossRef]
- Müller, G.; Förstner, U. Schwermetalle in den Sedimenten der Elbe bei Stade: Veräinderungen Seit 1973. Naturwissenschaften 1976, 63, 242–243. [Google Scholar] [CrossRef] [PubMed]
- CNEMC. China National Environmental Monitoring Center. The Backgrounds of Soil Environment in China; Environmental Science Press of China: Beijing, China, 1990.
- Häkanson, L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metal’s toxicity coefficient in the evalution of potential ecological risk index. Environ. Sci. Technol. 2018, 31, 112–115. [Google Scholar]
- Ministry of Environmental Protection of China. Environment Quality Standards for Soils in China, GB15618-2018; Ministry of Environmental Protection of China: Beijing, China, 2018.
- Xu, L.; Wang, L.; Wang, T.; Luo, W.; Ni, K.; Liu, S.; Li, Q.; Lu, Y. Factors influencing the contents of metals and as in soils around the watershed of Guanting Reservoir, China. J. Environ. Sci. 2013, 25, 561–568. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Wang, D.; Zhang, H. The flux of sedimentary heavy metals and variation of ecological risks recorded by sediments from Guanting Reservoir. Acta Sci. Circumstantiae 2016, 36, 458–465. [Google Scholar]
- Wang, T.; Pan, J.; Liu, X. Characterization of heavy metal contamination in the soil and sediment of the Three Gorges Reservoir, China. J. Environ. Sci. Health Part A 2017, 52, 201–209. [Google Scholar] [CrossRef]
- Ji, H.; Li, H.; Zhang, Y.; Ding, H.; Gao, Y.; Xing, Y. Distribution and risk assessment of heavy metals in overlying water, porewater and sediments of Yongding River in a coal mine brownfield. J. Soils Sediments 2018, 18, 624–639. [Google Scholar] [CrossRef]
- Pourabadehei, M.; Mulligan, C.N. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ. Pollut. 2016, 213, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.L.; Pan, Y.; Gong, H.L.; Zhou, D.M.; Wu, P.F. Analysis of the climate change and hydrological responses in Guishui River basin from 1959 to 2000. Res. Soil Water Conserv. 2012, 19, 43–48. [Google Scholar]
- Guo, B.; Zhang, J.; Gong, H.; Cheng, X. Future climate change impacts on the ecohydrology of Guishui River Basin, China. Ecohydrol. Hydrobiol. 2014, 14, 55–67. [Google Scholar] [CrossRef]
- González, Z.I.; Michael, K.; Cheburkin, A.K.; William, S. Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Environ. Sci. Technol. 2006, 40, 6568–6574. [Google Scholar] [CrossRef]
- Charlesworth, S.; Everett, M.; Mccarthy, R.; Ordó Ez, A.; Miguel, E.D. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2004, 29, 563–573. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, Q.; Xiao, H.; Chen, T.; Yang, J. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. Environ. Sci. Pollut. Res. 2017, 24, 14877–14888. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Lu, Y.; Giesy, J.P.; Wang, T.; Shi, Y.; Wang, G.; Xing, Y. Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environ. Geochem. Health 2007, 29, 459–471. [Google Scholar] [CrossRef]
- Green-Ruiz, C.; Páez-Osuna, F. Heavy metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabellón coastal system (SE Gulf of California). Environ. Int. 2001, 26, 265–273. [Google Scholar] [CrossRef]
- Maanan, M.; Ruiz-Fernandez, A.C.; Maanan, M.; Fatal, P.; Zourarah, B.; Sahabi, M. A long-term record of land use change impacts on sediments in Oualidia lagoon, Morocco. Int. J. Sediment. Res. 2014, 29, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.D.; Qi, X.; Zhang, X.Y.; Ma, Y. Identification of critical area of phosphorus loss in agricultural areas of Guishui River watershed by phosphorus loss risk assessment. Environ. Sci. 2008, 1, 32–37. [Google Scholar]
- Ren, C.J.; Zhao, Y.; Gong, J.G.; Wang, J.H.; Li, H.H.; Gu, J.P. Spatial distribution and effect factors of soil water repellency in Guishui River Basin. J. Agric. Mach. 2017, 10, 237–244. [Google Scholar]
- Khalil, A.; Hanich, L.; Bannari, A.; Zouhri, L.; Pourret, O.; Hakkou, R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. J. Geochem. Explor. 2013, 125, 117–129. [Google Scholar] [CrossRef]
- Marquez, J.; Pourret, O.; Faucon, M.; Weber, S.; Hoàng, T.; Martinez, R. Effect of Cadmium, Copper and Lead on the Growth of Rice in the Coal Mining Region of Quang Ninh, Cam-Pha (Vietnam). Sustainability 2018, 10, 1758. [Google Scholar] [CrossRef]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Nour, H.E.S. Distribution, ecological risk and source analysis of heavy metals in recent beach sediments of Sharm El-Sheikh, Egypt. Environ. Monit. Assess. 2019, 191, 546. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Sturges, W.T.; Barrie, L.A. Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 1987, 329, 144–146. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Li, X.D.; Zhang, G.; Li, J.; Ding, A.J.; Wang, T. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmos. Environ. 2007, 41, 432–447. [Google Scholar] [CrossRef]
- Mukai, H.; Furuta, N.; Fujii, T.; Ambe, Y.; Sakamoto, K.; Hashimoto, Y. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ. Sci. Technol. 1993, 27, 1347–1356. [Google Scholar] [CrossRef]
- Mukai, H.; Tanaka, A.; Fujii, T.; Zeng, Y.; Hong, Y.; Tang, J.; Guo, S.; Xue, H.; Sun, Z.; Zhou, J. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ. Sci. Technol. 2001, 35, 1064. [Google Scholar] [CrossRef]
- Zheng, J.; Tan, M.; Shibata, Y.; Tanaka, A.; Yan, L.; Zhang, G.; Zhang, Y.; Shan, Z. Characteristics of lead isotope ratios and elemental concentrations in PM fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos. Environ. 2004, 38, 1191–1200. [Google Scholar] [CrossRef]
- Tan, M.G.; Zhang, G.L.; Li, X.; Zhang, Y.X.; Yue, W.S.; Chen, J.M.; Wang, Y.S.; Li, A.G.; Li, Y.; Zhang, Y.M. Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal. Chem. 2006, 78, 8044–8050. [Google Scholar] [CrossRef]
- Chen, J.; Tan, M.; Li, Y.; Zheng, J.; Zhang, Y.; Shan, Z.; Zhang, G.; Li, Y. A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos. Environ. 2005, 39, 1245–1253. [Google Scholar] [CrossRef]
- Bollhöfer, A.; Rosman, K.J.R. Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochim. Et Cosmochim. Acta 2001, 65, 1727–1740. [Google Scholar] [CrossRef]
- Hsu, S.C.; Liu, S.C.; Jeng, W.L.; Chou, C.C.K.; Hsu, R.T.; Huang, Y.T.; Chen, Y.W. Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmos. Environ. 2006, 40, 5393–5404. [Google Scholar] [CrossRef]
- Zhu, L.; Tang, J.; Lee, B.; Zhang, Y.; Zhang, F. Lead concentrations and isotopes in aerosols from Xiamen, China. Mar. Pollut. Bull. 2010, 60, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Yin, J.; Zhang, M.; Zhang, T. Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing. Atmos. Environ. 2014, 91, 85–94. [Google Scholar] [CrossRef]
- Zhu, B. The mapping of geochemical provinces in China based on Pb isotopes. J. Geochem. Explor. 1995, 55, 171–181. [Google Scholar] [CrossRef]
- Zhu, B.Q. Theory and Application of Isotopic Systematic in Earth Science; Science Press: Beijing, China, 1998; 330p. [Google Scholar]
- Zhu, B.Q.; Chen, Y.W.; Peng, J.H. Pb isotopic geochemistry of urban environment in Pearl River Delta. Appl. Geochem. 2001, 16, 409–417. [Google Scholar]
- Millot, R.; AllèGre, C.J.; Gaillardet, J.; Roy, S. Lead isotopic systematics of major river sediments: A new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol. 2004, 203, 75–90. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevič, M.; Šebek, O.; Molek, M.; Grygar, T.; Zeman, J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ. Pollut. 2006, 142, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Pizzol, M.; Xu, L. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. Environ. Pollut. 2017, 226, 356–369. [Google Scholar] [CrossRef]
- Yu, S.; Liu, W.; Xu, Y.; Yi, K.; Zhou, M.; Tao, S.; Liu, W. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total Environ. 2019, 650, 277–287. [Google Scholar] [CrossRef]
- Koukouzas, N.K.; Zeng, R.; Perdikatsis, V.; Xu, W.; Kakaras, E.K. Mineralogy and geochemistry of Greek and Chinese coal fly ash. Fuel 2006, 85, 2301–2309. [Google Scholar] [CrossRef]
- Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Li, S.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
Sample Site | Location | Description | Classification | pH | OM (%dry weight) |
---|---|---|---|---|---|
S1 | 115.52° E, 40.27° N | North Road of Binhe, Gucheng River | soil | 8.2 | 2.3 |
sediment | 8.19 | 3.3 | |||
S2 | 115.56° E, 40.26° N | North Road of Binhe, Guishui River | soil | 8.09 | 5.8 |
sediment | 8.04 | 5.4 | |||
S3 | 115.57° E, 40.28° N | Longshun Road, Guishui River | soil | 7.82 | 4.8 |
sediment | 7.84 | 17.7 | |||
S4 | 116.00° E, 40.27° N | Spa Resort, Sanli River | soil | 7.7 | 17.3 |
sediment | 8.03 | 15.6 | |||
S5 | 116.02° E, 40.27° N | South Road of Huanhu, Guishui River | soil | 8.25 | 5.6 |
S6 | 116.05° E, 40.29° N | The Bridge of Caijia River | soil | 8.25 | 2.5 |
sediment | 8.56 | 1.3 |
Location | As | B | Ba | Be | Cd | Co | Cr | Cu | Ga | Li | Mn | Ni | Pb | Tl | V | Zn | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Range | 5.41–10.60 | 24.37–49.37 | 472.79–542.25 | 1.52–2.49 | 0.10–0.27 | 7.13–11.96 | 36.27–58.56 | 12.54–29.86 | 25.20–28.16 | 18.67–29.28 | 400.90–617.22 | 15.43–27.84 | 18.90–36.01 | 0.50–0.62 | 51.45–78.08 | 46.12–162.05 | This study |
Mean | 8.57 | 39.58 | 513.48 | 1.84 | 0.16 | 10.44 | 52.04 | 20.04 | 26.55 | 24.40 | 513.68 | 23.24 | 25.25 | 0.57 | 67.77 | 75.17 | ||
Std | 2.03 | 7.98 | 30.08 | 0.32 | 0.06 | 1.85 | 7.61 | 5.97 | 1.00 | 4.07 | 100.75 | 5.11 | 6.00 | 0.05 | 9.92 | 39.64 | ||
Soil around Guanting reservoir (N = 61) | Mean | 8.67 | / | / | / | 0.32 | / | 37.9 | 16.8 | / | / | / | 18.3 | 20.1 | / | / | 59.4 | [33] |
Sediment | Range | 5.81–8.11 | 33.12–40.95 | 351.70–609.54 | 1.59–2.00 | 0.09–0.22 | 10.00–11.02 | 46.72–53.98 | 15.97–21.17 | 21.64–29.80 | 22.80–23.71 | 391.27–882.73 | 19.92–23.65 | 19.57–25.62 | 0.47–0.58 | 59.54–73.54 | 56.39–91.80 | This study |
Mean | 6.81 | 36.72 | 492.98 | 1.75 | 0.14 | 10.48 | 50.45 | 17.95 | 25.88 | 23.39 | 631.74 | 21.78 | 22.42 | 0.55 | 66.95 | 66.76 | ||
Std | 1.02 | 3.54 | 106.27 | 0.17 | 0.06 | 0.46 | 3.58 | 2.30 | 3.35 | 0.40 | 204.71 | 1.55 | 2.48 | 0.05 | 5.77 | 16.91 | ||
Sediment of Guanting reservoir (N = 5) | Mean | / | / | / | / | 0.205 | / | 64.6 | 36.1 | / | / | / | 38.4 | 33.5 | / | / | 104 | [34] |
Sediment of Yanghe River (N = 14) | Mean | / | / | / | / | 0.34 | / | 59.91 | 30.64 | / | / | / | 30.85 | 39.51 | / | / | 129.27 | [35] |
Sediment of Yongding River (N = 11) | Mean | / | / | / | / | 0.25 | / | 47.61 | 24.71 | / | / | / | 40.45 | 35.47 | / | / | 94.75 | [36] |
Background values in soil of Beijing | 9.4 | 43.5 | 522 | 1.35 | 0.0534 | 15 | 66.7 | 23.1 | 17 | 34.3 | 688 | 28.2 | 24.7 | 0.452 | 77.4 | 97.2 | [29] | |
Environmental quality standard for soils in China (pH > 7.5) | ≤20 | / | / | / | ≤0.8 | / | ≤350 | ≤200 | / | / | / | ≤190 | ≤240 | / | / | ≤300 | [32] |
Sampling Site | Ei | RI | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | |||
S1 | sediment | 1.4 | 3.5 | 3.6 | 0.6 | 6.2 | 74.2 | 4.5 | 94.1 |
soil | 1.1 | 3.0 | 2.8 | 0.5 | 5.8 | 55.1 | 3.8 | 72.0 | |
S2 | sediment | 1.6 | 3.9 | 3.9 | 0.6 | 8.6 | 61.8 | 4.5 | 84.9 |
soil | 1.6 | 4.7 | 4.7 | 0.7 | 10.4 | 103.4 | 5.2 | 130.7 | |
S3 | sediment | 1.6 | 4.2 | 4.6 | 0.9 | 7.6 | 121.3 | 5.2 | 145.4 |
soil | 1.7 | 4.9 | 6.5 | 1.7 | 9.0 | 153.9 | 7.3 | 185.0 | |
S4 | sediment | 0.9 | 0.9 | 1.9 | 0.2 | 1.6 | 49.4 | 1.0 | 55.9 |
soil | 1.6 | 4.6 | 4.8 | 0.6 | 9.8 | 68.5 | 4.6 | 90.9 | |
S5 | soil | 1.5 | 2.7 | 2.7 | 0.5 | 6.6 | 73.0 | 3.9 | 120.2 |
S6 | sediment | 1.4 | 3.8 | 3.5 | 0.6 | 6.6 | 50.6 | 4.0 | 70.4 |
soil | 1.6 | 4.1 | 4.1 | 0.7 | 11.3 | 68.5 | 5.9 | 96.3 |
Elememts | PC1 | PC2 |
---|---|---|
Li | 0.938 | −0.272 |
Be | 0.829 | −0.341 |
B | 0.910 | −0.095 |
V | 0.963 | −0.220 |
Cr | 0.894 | 0.081 |
Mn | 0.748 | 0.009 |
Co | 0.974 | −0.060 |
Ni | 0.965 | 0.073 |
Cu | 0.848 | 0.476 |
Zn | 0.683 | 0.680 |
Ga | 0.903 | −0.300 |
As | 0.892 | −0.135 |
Cd | 0.597 | 0.733 |
Ba | 0.798 | −0.241 |
Tl | 0.960 | −0.228 |
Pb | 0.927 | 0.260 |
Eigenvalue | 12.133 | 1.776 |
Percentage of variance (%) | 75.833 | 11.098 |
Cumulative variance (%) | 75.833 | 86.931 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gao, B.; Yin, S.; Liu, L.; Xu, D.; Li, Y. Comprehensive Evaluation and Source Apportionment of Potential Toxic Elements in Soils and Sediments of Guishui River, Beijing. Water 2019, 11, 1847. https://doi.org/10.3390/w11091847
Wang J, Gao B, Yin S, Liu L, Xu D, Li Y. Comprehensive Evaluation and Source Apportionment of Potential Toxic Elements in Soils and Sediments of Guishui River, Beijing. Water. 2019; 11(9):1847. https://doi.org/10.3390/w11091847
Chicago/Turabian StyleWang, Jiankang, Bo Gao, Shuhua Yin, Laisheng Liu, Dongyu Xu, and Yanyan Li. 2019. "Comprehensive Evaluation and Source Apportionment of Potential Toxic Elements in Soils and Sediments of Guishui River, Beijing" Water 11, no. 9: 1847. https://doi.org/10.3390/w11091847
APA StyleWang, J., Gao, B., Yin, S., Liu, L., Xu, D., & Li, Y. (2019). Comprehensive Evaluation and Source Apportionment of Potential Toxic Elements in Soils and Sediments of Guishui River, Beijing. Water, 11(9), 1847. https://doi.org/10.3390/w11091847