Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan
Abstract
:1. Introduction
2. Study Area
3. Data and Study Methods
3.1. Landslide Data
3.2. Rainfall Data
3.3. Soil Water Index
4. Results and Discussion
4.1. Rainfall Conditions and SWI for Triggering Large-Scale Landslides
4.2. Soil Water Index–Rainfall Duration (SWI–D) Threshold for Large-Scale Landslides (LSLs) and Verification
4.3. Comparison with Small-Scale Landslides
4.4. Effect of Antecedent SWI
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tu, J.Y.; Chou, C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events. Environ. Res. Lett. 2013, 8, 014023. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Korup, O.; Uchida, T.; Hayashi, S.; Oguchi, T. Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan. Geology 2014, 42, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.J. Trends in Extreme Weather Events since 1900—An Enduring Conundrum for Wise Policy Advice. J. Geogr. Nat. Disasters 2016, 6, 1000155. [Google Scholar]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Chigira, M.; Kiho, K. Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Eng. Geol. 1994, 38, 221–230. [Google Scholar] [CrossRef]
- Lin, C.W.; Liu, S.H.; Lee, S.Y.; Liu, C.C. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng. Geol. 2006, 86, 87–101. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Guzzetti, F.; Rossi, M. Probability distributions of landslide volumes. Nonlinear Process. Geophys. 2009, 16, 179–188. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Chapter 3-Landslide types and process. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hung, C.; Liu, C.H.; Lin, G.W.; Leshchinsky, B. The Aso-Bridge coseismic landslide: A numerical investigation of failure and runout behavior using finite and discrete element methods. Bull. Eng. Geol. Environ. 2018, 78, 2459–2472. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth Sci. Rev. 2019, 200, 102973. [Google Scholar] [CrossRef]
- Jan, C.D.; Lee, M.H. A debris-flow rainfall-based warning model. J. Chin. Soil Water Conserv. 2004, 35, 273–283. [Google Scholar]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Phys. Geogr. 1980, 62, 23–27. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Chen, C.W.; Saito, H.; Oguchi, T. Rainfall intensity–duration conditions for mass movements in Taiwan. Prog. Earth Planet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Gariano, S.L.; Sarkar, R.; Dikshit, A.; Dorji, K.; Brunetti, M.T.; Peruccacci, S.; Melillo, M. Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan. Bull. Eng. Geol. Environ. 2019, 78, 4325–4332. [Google Scholar] [CrossRef]
- Kuo, H.L.; Lin, G.W.; Chen, C.W.; Saito, H.; Lin, C.W.; Chen, H.; Chao, W.A. Evaluating critical rainfall conditions for large-scale landslides by detecting event times from seismic records. Nat. Hazards Earth Syst. Sci. 2018, 18, 2877–2891. [Google Scholar] [CrossRef] [Green Version]
- Bogaard, T.; Greco, R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, M.E.; Ozaki, I.; Watanabe, I.; Katsuyama, Y. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune. In Research Notes of the National Research Center for Disaster Prevention; Science and Technology Agency: Tokyo, Japan, 1974; pp. 1–64. [Google Scholar]
- Segoni, S.; Rosi, A.; Lagomarsino, D.; Fanti, R.; Casagli, N. Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat. Hazards Earth Syst. Sci. 2018, 18, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Oku, Y.; Yoshino, J.; Takemi, T.; Ishikawa, H. Assessment of heavy rainfall-induced disaster potential based on an ensemble simulation of Typhoon Talas (2011) with controlled track and intensity. Nat. Hazards Earth Syst. Sci. 2014, 14, 2699–2709. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.E.; Chan, Y.H.; Kuo, C.Y.; Chen, R.F.; Hsu, Y.J.; Chang, K.J.; Lee, S.P.; Wu, R.Y.; Lin, C.W. The Use of a Hydrological Catchment Model to Determine the Occurrence of Temporal Creeping in Deep-seated Landslides. J. Chin. Soil Water Conserv. 2017, 48, 153–162. (In Chinese) [Google Scholar]
- Nie, W.; Krautblatter, M.; Leith, K.; Thuro, K.; Festl, J. A modified tank model including snowmelt and infiltration time lags for deep-seated landslides in alpine environments (Aggenalm, Germany). Nat. Hazards Earth Syst. Sci. 2017, 17, 1595–1610. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Saito, H.; Oguchi, T. Analyzing rainfall-induced mass movements in Taiwan using the soil water index. Landslides 2017, 14, 1031–1041. [Google Scholar] [CrossRef]
- Mercogliano, P.; Segoni, S.; Rossi, G.; Sikorsky, B.; Tofani, V.; Schiano, P.; Catani, F.; Casagli, N. Brief communication “A prototype forecasting chain for rainfall induced shallow landslides”. Nat. Hazards Earth Syst. Sci. 2013, 13, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Dorji, K. Estimating rainfall thresholds for landslide occurrence in the Bhutan Himalayas. Water 2019, 11, 1616. [Google Scholar] [CrossRef] [Green Version]
- Willett, S.D.; Fisher, D.; Fuller, C.; Yeh, E.C.; Lu, C.Y. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 2003, 31, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.S. An Introduction to the geology of Taiwan: Explanatory TEXT of the geological map of Taiwan. In Central Geological Survey, 2nd ed.; Ministry of Economic Affairs: Taipei, Taiwan, 1988; p. 192. [Google Scholar]
- Li, Y.H. Denudation of Taiwan island since the Pliocene epoch. Geology 1976, 4, 105–107. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Chu, H.T.; Lin, J.C. Supply and Removal of Sediment in a Landslide-Dominated Mountain Belt: Central Range, Taiwan. J. Geol. 2000, 108, 73–89. [Google Scholar] [CrossRef]
- Shieh, S.L.; Wang, S.T.; Cheng, M.D.; Yeh, T.C.; Chiou, T.K. User’s Guide for Typhoon Forecasting in the Taiwan Area (VII); Central Weather Bureau: Taipei, Taiwan, 1998; p. 171.
- Wu, C.C.; Kuo, Y.H. Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Am. Meteorol. Soc. 1999, 80, 67–80. [Google Scholar] [CrossRef]
- Dammeier, F.; Moore, J.R.; Haslinger, F.; Loew, S. Characterization of alpine rockslides using statistical analysis of seismic signals. J. Geophys. Res. Earth Surf. 2011, 116, F04024. [Google Scholar] [CrossRef]
- Manconi, A.; Picozzi, M.; Coviello, C.; De Santis, F.; Elia, L. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks. Geophys. Res. Lett. 2016, 43, 6960–6967. [Google Scholar] [CrossRef]
- Chen, C.H.; Chao, W.A.; Wu, Y.M.; Zhao, L.; Chen, Y.G.; Ho, W.Y.; Lin, T.L.; Kuo, K.H.; Chang, J.M. A seismological study of landquakes using a real-time broad-band seismic network. Geophys. J. Int. 2013, 194, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.W.; Liu, C.W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320. [Google Scholar] [CrossRef]
- Okada, K.; Makihara, Y.; Shimpo, A.; Nagata, K.; Kunitsugu, M.; Saito, K. Soil water index. Tenki 2001, 47, 36–41. [Google Scholar]
- Xie, Z.; Su, F.; Liang, X.; Zeng, Q.; Hao, Z.; Guo, Y. Applications of a surface runoff model with Horton and Dunne runoff for VIC. Adv. Atmos. Sci. 2003, 20, 165–172. [Google Scholar]
- Kirchner, J.W. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 2009, 45, W02429. [Google Scholar] [CrossRef] [Green Version]
- Osanai, N.; Shimizu, T.; Kuramoto, K.; Kojima, S.; Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 2010, 7, 325–338. [Google Scholar] [CrossRef]
- Song, J.H.; Her, Y.; Park, J.; Lee, K.D.; Kang, M.S. Simulink Implementation of a Hydrologic Model: A Tank Model Case Study. Water 2017, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Paik, K.; Kim, J.H.; Kim, H.S.; Lee, D.R. A conceptual rainfall-runoff model considering seasonal variation. Hydrol. Process. 2005, 19, 3837–3850. [Google Scholar] [CrossRef]
- Jang, T.; Kim, H.; Kim, S.; Seong, C.; Park, S. Assessing irrigation water capacity of land use change in a data-scarce watershed of Korea. J. Irrig. Drain. Eng. 2011, 138, 445–454. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
ID | Date/Time (UTC) | Longitude (°E) | Latitude (°N) | Area (km2) | ID | Date/Time (UTC) | Longitude (°E) | Latitude (°N) | Area (km2) |
---|---|---|---|---|---|---|---|---|---|
1 | 31 Jul 2001/17:36 | 121.344 | 23.627 | 0.49 | 43 | 08 Aug 2009/13:56 | 120.661 | 22.960 | 0.11 |
2 | 18 Sep 2001/16:24 | 121.203 | 23.379 | 0.16 | 44 | 08 Aug2009/18:28 | 120.656 | 22.948 | 0.12 |
3 | 04 Aug 2003/11:57 | 120.738 | 22.391 | 0.18 | 45 | 10 Aug 2009/18:42 | 120.762 | 22.823 | 0.55 |
4 | 04 Aug 2003/04:18 | 120.966 | 23.429 | 0.13 | 46 | 09 Aug 2009/11;00 | 120.772 | 22.816 | 0.13 |
5 | 02 Jul 2004/19:03 | 121.491 | 24.241 | 0.1 | 47 | 08 Aug 2009/10:40 | 120.858 | 22.797 | 0.16 |
6 | 01 Jul 2004/19:36 | 121.248 | 23.596 | 0.15 | 48 | 08 Aug 2009/07:35 | 120.703 | 22.754 | 0.49 |
7 | 30 Jun 2004/23:51 | 121.333 | 23.174 | 0.11 | 49 | 08 Aug 2009/18:19 | 120.716 | 22.700 | 0.56 |
8 | 24 Aug 2004/14:54 | 120.763 | 23.566 | 0.22 | 50 | 08Aug 2009/19:19 | 120.712 | 22.673 | 0.64 |
9 | 20 Jul 2005/21:55 | 120.817 | 22.881 | 0.12 | 51 | 09 Aug 2009/03:55 | 120.719 | 22.603 | 0.63 |
10 | 21 Jul 2005/06:33 | 120.718 | 22.850 | 0.18 | 52 | 08 Aug 2009/20:15 | 120.733 | 22.586 | 0.73 |
11 | 18 Jul 2005/19:42 | 120.737 | 22.800 | 0.13 | 53 | 08 Aug 2009/00:04 | 120.724 | 22.565 | 0.39 |
12 | 20 Jul 2005/18:15 | 120.752 | 22.742 | 0.13 | 54 | 08 Aug 2009/17:05 | 120.708 | 22.494 | 0.94 |
13 | 09 Jun 2006/16:53 | 121.171 | 24.125 | 0.12 | 55 | 08 Aug 2009/00:35 | 120.727 | 22.494 | 0.12 |
14 | 15 Sep 2008/02:45 | 121.383 | 24.353 | 0.14 | 56 | 08 Aug 2009/21:42 | 120.909 | 23.100 | 0.25 |
15 | 18 Jul 2008/21:30 | 121.006 | 23.819 | 0.1 | 57 | 08 Aug 2009/17:53 | 120.911 | 23.079 | 0.19 |
16 | 18 Jul 2008/15:29 | 120.829 | 23.544 | 0.11 | 58 | 08 Aug 2009/17:21 | 120.902 | 23.072 | 0.28 |
17 | 18 Jul 2008/23:55 | 120.660 | 23.147 | 0.12 | 59 | 08 Aug 2009/02:20 | 120.847 | 22.975 | 0.11 |
18 | 08 Aug 2009/22:52 | 120.901 | 23.537 | 0.12 | 60 | 08 Aug 2009/23:15 | 120.772 | 22.627 | 0.15 |
19 | 08 Aug 2009/05:35 | 120.832 | 23.516 | 0.5 | 61 | 08 Aug 2009/18:16 | 120.831 | 22.626 | 0.72 |
20 | 08 Aug 2009/18:11 | 120.786 | 23.512 | 1.12 | 62 | 08 Aug 2009/23:41 | 120.837 | 22.625 | 0.12 |
21 | 08 Aug 2009/21:30 | 120.921 | 23.488 | 0.12 | 63 | 08 Aug 2009/09:00 | 120.793 | 22.611 | 0.62 |
22 | 08 Aug 2009/01:20 | 120.768 | 23.487 | 0.14 | 64 | 09 Aug 2009/09:31 | 120.813 | 22.560 | 2.31 |
23 | 09 Aug 2009/19:36 | 120.559 | 23.320 | 0.39 | 65 | 19 Sep 2010/23:24 | 120.728 | 22.850 | 0.15 |
24 | 08 Aug 2009/21:11 | 120.899 | 23.456 | 0.15 | 66 | 30 Aug 2011/09:13 | 121.183 | 23.685 | 0.11 |
25 | 08 Aug 2009/20:27 | 120.919 | 23.404 | 0.12 | 67 | 31 Aug 2011/09:37 | 120.976 | 23.331 | 0.11 |
26 | 08 Aug 2009/08:00 | 120.915 | 23.334 | 0.41 | 68 | 30 Aug 2011/07:10 | 120.929 | 22.859 | 0.12 |
27 | 08 Aug 2009/03:27 | 120.912 | 23.329 | 0.4 | 69 | 03 Aug 2012/01:00 | 121.377 | 24.359 | 0.19 |
28 | 08 Aug 2009/11:35 | 120.949 | 23.327 | 0.22 | 70 | 02 Aug 2012/19:00 | 120.946 | 23.740 | 0.25 |
29 | 10 Aug 2009/04:22 | 120.759 | 23.309 | 1.52 | 71 | 01 Aug 2012/18:39 | 121.417 | 24.576 | 0.12 |
30 | 08 Aug 2009/23:14 | 120.754 | 23.293 | 0.56 | 72 | 02 Aug 2012/10:00 | 121.853 | 24.525 | 0.12 |
31 | 10 Aug 2009/03:54 | 120.799 | 23.247 | 0.2 | 73 | 29 Aug 2013/19:48 | 120.825 | 22.862 | 0.21 |
32 | 09 Aug 2009/02:52 | 120.767 | 23.231 | 0.81 | 74 | 22 Aug 2013/19:05 | 121.073 | 23.383 | 0.18 |
33 | 09 Aug2009/00:34 | 120.767 | 23.215 | 2.24 | 75 | 13 Jul 2013/14:27 | 120.886 | 23.023 | 0.4 |
34 | 08 Aug 2009/16:15 | 120.881 | 23.180 | 0.14 | 76 | 09 Aug 2015/14:45 | 121.012 | 23.685 | 0.11 |
35 | 08 Aug 2009/22:16 | 120.656 | 23.166 | 2.5 | 77 | 09 Aug 2015/02:00 | 121.199 | 23.969 | 0.06 |
36 | 10 Aug 2009/11:06 | 120.857 | 23.157 | 0.34 | 78 | 08 Aug 2015/19:00 | 120.776 | 23.213 | 0.21 |
37 | 08 Aug 2009/03:55 | 120.754 | 23.082 | 0.33 | 79 | 16 Sep 2016/23:06 | 121.075 | 23.577 | 0.18 |
38 | 08 Aug 2009/06:25 | 120.825 | 23.062 | 0.39 | 80 | 08 Jul 2106/07:48 | 121.427 | 24.172 | 0.04 |
39 | 08 Aug 2009/23:02 | 120.604 | 23.034 | 0.13 | 81 | 16 Sep 2016/02:33 | 121.626 | 24.342 | 0.04 |
40 | 08 Aug 2009/07:15 | 120.704 | 23.012 | 0.23 | 82 | 28 Sep 2016/20:45 | 121.427 | 24.173 | 0.02 |
41 | 08 Aug 2009/06:28 | 120.671 | 23.008 | 0.15 | 83 | 29 Sep 2016/01:45 | 121.117 | 23.485 | 0.01 |
42 | 08 Aug 2009/08:10 | 120.813 | 22.997 | 0.19 |
Tank | First | Second | Third |
---|---|---|---|
Outflow height (mm) | L11 = 15 | L21 = 15 | L31 = 15 |
L12 = 60 | |||
Outflow coefficient (1/h) | a11 = 0.1 | a21 = 0.05 | a31 = 0.01 |
a12 = 0.15 | |||
Coefficient of permeability (1/h) | b1 = 0.12 | b1 = 0.05 | b1 = 0.01 |
Rainfall Conditions | SWI ≤ 14.7 | 14.7 < SWI < 29.4 | SWI ≥ 29.4 |
---|---|---|---|
Duration (h) | 134 | 134 | 121 |
Cumulative rainfall (mm) | 2159.8 | 1681.1 | 826.9 |
Average rainfall intensity (mm/h) | 30.6 | 24.7 | 23.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.-W.; Kuo, H.-L.; Chen, C.-W.; Wei, L.-W.; Zhang, J.-M. Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan. Water 2020, 12, 253. https://doi.org/10.3390/w12010253
Lin G-W, Kuo H-L, Chen C-W, Wei L-W, Zhang J-M. Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan. Water. 2020; 12(1):253. https://doi.org/10.3390/w12010253
Chicago/Turabian StyleLin, Guan-Wei, Hsien-Li Kuo, Chi-Wen Chen, Lun-Wei Wei, and Jia-Ming Zhang. 2020. "Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan" Water 12, no. 1: 253. https://doi.org/10.3390/w12010253
APA StyleLin, G. -W., Kuo, H. -L., Chen, C. -W., Wei, L. -W., & Zhang, J. -M. (2020). Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan. Water, 12(1), 253. https://doi.org/10.3390/w12010253