Monitoring of Soil Water Content in Maize Rotated with Pigeonpea Fallows in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Trial Management
2.3. Measurement of Soil Water Content and Water Use (WU)
2.4. Sampling of Dry Biomass Matter Yield
2.5. Data Analysis
3. Results
3.1. Rainfall During Fallow Phase and Post-Fallow Phase
3.2. Soil Water Content Within Soil Profiles
3.3. Total Actual Evapotranspiration / Water Use (WU)
3.4. Total Cumulative Biomass Matter Yield
3.5. Water Use Efficiency (WUE)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chirwa, T.; Mafongoya, P.; Chintu, R. Mixed planted-fallows using coppicing and non-coppicing tree species for degraded Acrisols in eastern Zambia. Agrofor. Syst. 2003, 59, 243–251. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Richards, J.H. Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 1989, 79, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bayala, J.; Prieto, I. Water acquisition, sharing and redistribution by roots: applications to agroforestry systems. Plant Soil 2019. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.W.; Akinnifesi, F.K.; Ajayi, O.C.; Muys, B. Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture. Agric. Water Manag. 2011, 98, 1364–1372. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soils to achieve greater water use efficiency. J. Agron. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Phiri, E.; Verplancke, H.; Kwesiga, F.; Mafongoya, P. Water balance and maize yield following improved sesbania fallow in eastern Zambia. Agrofor. Syst. 2003, 59, 197–205. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Ong, C.K.; Maghembe, J.; Black, C.R. Soil water dynamics in intercropping systems containing Gliricidia sepium, pigeonpea and maize in southern Malawi. Agrofor. Syst. 2007, 69, 29–43. [Google Scholar] [CrossRef]
- Droppelmann, K.J.; Lehmann, J.; Ephrath, J.E.; Berliner, P.R. Water use efficiency and uptake patterns in a runoff agroforestry system in an arid environment. Agroforest. Syst. 2000, 49, 223–243. [Google Scholar] [CrossRef]
- Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q.; Yang, N.; Feng, C.; Zhang, Z.; Evers, J.B.; et al. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agric. Water Manag. 2016, 178, 281–290. [Google Scholar] [CrossRef]
- Bayala, J.; Wallace, J.W. The water balance of mixed tree-crop systems. In Tree-Crop Interaction: Agroforestry in a Changing Climate; Black, C., Wilson, J., Ong, C.K., Eds.; CABI: London, UK, 2015. [Google Scholar]
- Bargués-Tobella, A.; Hasselquist, N.; Bazié, H.; Nyberg, G.; Laudon, H.; Bayala, J.; Ilstedt, U. Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. Ecohydrology 2017, 10, e1808. [Google Scholar] [CrossRef]
- Kamara, C.S.; Haque, I. Faidherbia albida and its effects on Ethiopian highland Vertisols. Agrofor. Syst. 1992, 18, 17–29. [Google Scholar] [CrossRef]
- Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (synAcacia albida) in central malawi. Agrofor. Syst. 1995, 29, 133–145. [Google Scholar] [CrossRef]
- Wallace, J.S. The water balance of mixed tree-crop systems. In Tree-Crop Interactions in Agroforestry Systems: A Physiological Approach; Ong, C.K., Huxley, P.A., Eds.; CAB International: Wallingford, UK, 1996; pp. 189–233. [Google Scholar]
- Lin, B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Ong, C.K.; Black, C.R.; Marshall, F.M.; Corlett, J.E. Principles of resource capture and utilization of light and water. In Tree-Crop Interactions in Agroforestry Systems: A Physiological Approach; Ong, C.K., Huxley, P.A., Eds.; CAB International: Wallingford, UK, 1996; pp. 73–158. [Google Scholar]
- Ong, C.K.; Black, C.R.; Muthuri, C.W. Modifying forests and agroforestry for improved water productivity in the semiarid tropics. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2006, 65, 1–19. [Google Scholar]
- Hörmann, G.; Herbst, M.; Eschenbach, C. Water relations at different scales. In Ecosystem Organization of a Complex Landscape; Fränzle, O., Kappen, L., Blume, H.-P., Dierssen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 101–117. [Google Scholar]
- Ong, C.K.; Wilson, J.; Deans, D.; Mulayta, J.; Raussen, T.; Wajja-Musukwe, N. Tree-crop interactions: Manipulation of water use and root function. Agric. Water Manag. 2020, 53, 171–186. [Google Scholar] [CrossRef]
- Everson, C.; Ghehezi, S.; Everson, T.M.; Annandale, J. Agroforestry systems for improved food production through the efficient use of water—Final report for WRC Project No. K5/1480. Presented at WRC Reference Group Meeting, Pretoria, South Africa, 16 November 2011. [Google Scholar]
- Everson, C.; Dye, P.; Gush, M.; Everson, T. Water use of grasslands, agroforestry systems and indigenous forests. Water Sa 2011, 37, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Chen, M.; Wan, S. Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain. Agric. Water Manag. 2010, 97, 1303–1309. [Google Scholar] [CrossRef]
- Tian, M.; Tan, G.; Liu, Y.; Rong, T.; Huang, Y. Origin and evolution of Chinese waxy maize: Evidence from the Globulin-1 gene. Genet. Resour. Crop. Evol. 2008, 56, 247–255. [Google Scholar] [CrossRef]
- Mashingaidze, K. Farmer-participatory maize (Zea mays L.) cultivar evaluation and selection in Eastern Cape Province of South Africa. In Proceedings of the 2006 International Plant Breeding Symposium, Mexico City, Mexico, 20–25 August 2006. [Google Scholar]
- Abunyewa, A.A.; Karbo, K.N. Improved fallow with pigeonpea for soil fertility improvement and to increase maize production in smallholder crop-livestock farming system in the sub humid zone of Ghana. Land Degrad. Dev. 2005, 16, 447–454. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Chirwa, P.W.; Ajayi, O.C.; Sileshi, G.; Matakala, P.; Kwesiga, F.R.; Harawa, H.; Makumba, W. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agriculture 2008, 3, 58–75. [Google Scholar]
- Hluyako, L.L.; Odindo, A.O.; Mafongoya, P.; Sithole, N.J.; Magwaza, L.S. Characterisation of pigeon pea (Cajanus cajan) landraces grown in two climatic zones in KwaZulu-Natal province, South Africa. S. Afr. J. Plant Soil 2017, 34, 191–199. [Google Scholar] [CrossRef]
- Musokwa, M.; Mafongoya, P.; Lorentz, S. Evaluation of agroforestry systems for maize (Zea mays) productivity in South Africa. S. Afr. J. Plant Soil 2018, 36, 65–67. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Chami, D.E.; Moujabber, M.E. Drought, climate change and sustainability of water in agriculture: A roadmap towards the NWRS2. S. Afr. J. Sci. 2016, 112, 9–10. [Google Scholar] [CrossRef] [Green Version]
- International Institute of Tropical Agriculture (IITA). Selected Methods for Soil and Plant Analysis; (Manual Series); IITA: Ibadan, Nigeria, 1979; pp. 3, 6, 7, 10–12, 14–15. [Google Scholar]
- Faye, M. Soils of South Africa; Cambridge University Press: Cape Town, South Africa, 2010; p. 287. [Google Scholar]
- Mafongoya, P.L.; Dzowela, B.H. Biomass production of tree fallows and their residual effect on maize in Zimbabwe. Agrofor. Syst. 1999, 47, 139–151. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Mora, G.; Helmers, M.J. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S. Agric. Ecosyst. Environ. 2007, 121, 343–356. [Google Scholar] [CrossRef]
- Wang, P.; Song, X.; Han, D.; Zhang, Y.; Liu, X. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China. Agric. Water Manag. 2010, 97, 475–482. [Google Scholar] [CrossRef]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Physical and Mineralogical Methods, Part 1, 2nd ed.; Klute, A., Ed.; Agronomy Monographs 9; American Society of Agronomy: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.V.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; U.S. Government Printing Office: Washington, DC, USA, 1991; p. 85.
- Cucci, G.; LaColla, G.; Boari, F.; Mastro, M.A.; Cantore, V. Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy. Agric. Water Manag. 2019, 222, 118–124. [Google Scholar] [CrossRef]
- Bullied, W.J.; Entz, M.H. Soil water dynamics after alfalfa as influenced by crop termination technique. Agron. J. 1907, 91, 294–305. [Google Scholar] [CrossRef]
- Lott, J.E.; Khan, A.A.H.; Black, C.R.; Ong, C.K. Water use by trees and crops in a Grevillea robusta-based overstorey agroforestry system in semi-arid Kenya. For. Ecol. Manag. 2003, 180, 45–59. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Gregory, P.J.; Keatinge, J.D.H.; Brown, S.C. Effect of fertilizer variety and location on barley production under rainfed conditions in northern Syria. Field Crops Res. 1987, 16, 67–84. [Google Scholar] [CrossRef]
- Meena, B.L.; Singh, A.K.; Phogat, B.S.; Sharma, H.B. Effects of nutrient management and planting systems on root phenology and grain yield of wheat. Indian J. Agric. Sci. 2013, 83, 627–632. [Google Scholar]
Parameter | Value |
---|---|
Nitrogen (%) | 0.06 |
Phosphorus (mg kg−1) | 20.4 |
Potassium (mg kg−1) | 114.2 |
Calcium (mg kg−1) | 488 |
Magnesium (mg kg−1) | 95.6 |
Copper (mg kg−1) | 2.98 |
Total cations (cmol kg−1) | 3.594 |
Organic carbon (%) | 0.65 |
pH (KCl) | 4.37 |
Clay (%) | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musokwa, M.; Mafongoya, P.L.; Chirwa, P.W. Monitoring of Soil Water Content in Maize Rotated with Pigeonpea Fallows in South Africa. Water 2020, 12, 2761. https://doi.org/10.3390/w12102761
Musokwa M, Mafongoya PL, Chirwa PW. Monitoring of Soil Water Content in Maize Rotated with Pigeonpea Fallows in South Africa. Water. 2020; 12(10):2761. https://doi.org/10.3390/w12102761
Chicago/Turabian StyleMusokwa, Misheck, Paramu L. Mafongoya, and Paxie W. Chirwa. 2020. "Monitoring of Soil Water Content in Maize Rotated with Pigeonpea Fallows in South Africa" Water 12, no. 10: 2761. https://doi.org/10.3390/w12102761
APA StyleMusokwa, M., Mafongoya, P. L., & Chirwa, P. W. (2020). Monitoring of Soil Water Content in Maize Rotated with Pigeonpea Fallows in South Africa. Water, 12(10), 2761. https://doi.org/10.3390/w12102761