Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Hydrological Modeling
2.4. Hydrodynamic Modeling
2.5. Flood Hazard Mapping
3. Results and Discussion
3.1. HEC-HMS Calibration
3.2. Nays2DFlood Calibration and Reconstruction of the 500-Year Flood Event
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief Review of Flood Forecasting Techniques and Their Applications. Int. J. River Basin Manag. 2018, 16, 329–344. [Google Scholar] [CrossRef]
- IPCC. AR5 Climate Change 2013: The Physical Science Basis—IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and Climate: Emerging Perspectives for Flood Risk Assessment and Management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large Increase in Global Storm Runoff Extremes Driven by Climate and Anthropogenic Changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed]
- Merkuryeva, G.; Merkuryev, Y.; Sokolov, B.V.; Potryasaev, S.; Zelentsov, V.A.; Lektauers, A. Advanced River Flood Monitoring, Modelling and Forecasting. J. Comput. Sci. 2015, 10, 77–85. [Google Scholar] [CrossRef]
- Díez-Herrero, A.; Huerta, L.L.; Isidro, M.L. A Handbook on Flood Hazard Mapping Methodologies; Geological Survey of Spain: Madrid, Spain, 2009. [Google Scholar]
- Bates, P.D.; De Roo, A.P.J. A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Shimizu, Y.; Inoue, T.; Suzuki, E.; Kawamura, S.; Iwasaki, T.; Hamaki, M.; Omura, K.; Kakegawa, E.; Yoshida, T. Nays2DFlood—Solver Manual; The International River Interface Cooperative (iRIC): Hokkaido, Japan, 2015; pp. 1–51. [Google Scholar]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber: Herramienta de Simulación Numérica Del Flujo En Ríos. Int. J. Numer. Methods Calc. Des. Eng. (RIMNI) 2014, 30, 1–10. [Google Scholar] [CrossRef]
- Fernández-Pato, J.; Caviedes-Voullième, D.; García-Navarro, P. Rainfall/Runoff Simulation with 2D Full Shallow Water Equations: Sensitivity Analysis and Calibration of Infiltration Parameters. J. Hydrol. 2016, 536, 496–513. [Google Scholar] [CrossRef]
- Smart, G.M. Improving Flood Hazard Prediction Models. Int. J. River Basin Manag. 2018, 16, 449–456. [Google Scholar] [CrossRef]
- Rai, P.K.; Dhanya, C.T.; Chahar, B.R. Coupling of 1D Models (SWAT and SWMM) with 2D Model (IRIC) for Mapping Inundation in Brahmani and Baitarani River Delta. Nat. Hazards 2018, 92, 1821–1840. [Google Scholar] [CrossRef]
- Hanif, A.; Dhanasekar, A.; Keene, A.; Li, H.; Carlson, K. Flood Risk Assessment Methodology for Planning under Climate Change Scenarios and the Corresponding Change in Land Cover. J. Water Clim. Chang. 2019. [Google Scholar] [CrossRef]
- Mishra, B.K.; Rafiei Emam, A.; Masago, Y.; Kumar, P.; Regmi, R.K.; Fukushi, K. Assessment of Future Flood Inundations under Climate and Land Use Change Scenarios in the Ciliwung River Basin, Jakarta. J. Flood Risk Manag. 2018, 11, S1105–S1115. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Liang, Q. A Coupled Hydrological and Hydrodynamic Model for Flood Simulation. Hydrol. Res. 2019, 50, 589–606. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Lu, C. Integrated Hydrologic and Hydrodynamic Models to Improve Flood Simulation Capability in the Data-Scarce Three Gorges Reservoir Region. Water 2020, 12, 1462. [Google Scholar] [CrossRef]
- Chang, H.; Franczyk, J. Climate Change, Land-Use Change, and Floods: Toward an Integrated Assessment. Geogr. Compass 2008, 2, 1549–1579. [Google Scholar] [CrossRef]
- Barbedo, J.; Miguez, M.; van der Horst, D.; Marins, M. Enhancing Ecosystem Services for Flood Mitigation: A Conservation Strategy for Peri-Urban Landscapes? Ecol. Soc. 2014, 19, 54. [Google Scholar] [CrossRef]
- Tsakiris, G. Flood Risk Assessment: Concepts, Modelling, Applications. Nat. Hazards Earth Syst. Sci. 2014, 14, 1361–1369. [Google Scholar] [CrossRef]
- De Roo, A.; Schmuck, G.; Perdigao, V.; Thielen, J. The Influence of Historic Land Use Changes and Future Planned Land Use Scenarios on Floods in the Oder Catchment. Phys. Chem. Earth, Parts A/B/C 2003, 28, 1291–1300. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L.; Harmel, D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.J.; Vaze, J.; Croke, B.F.W.F.W.; Dutta, D.; Kim, S. Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Peña, F.; Nardi, F. Floodplain Terrain Analysis for Coarse Resolution 2D Flood Modeling. Hydrol. 2018, 5, 52. [Google Scholar] [CrossRef]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood Inundation Mapping Sensitivity to Riverine Spatial Resolution and Modelling Approach. Nat. Hazards 2016, 83, 117–132. [Google Scholar] [CrossRef]
- Caviedes-Voullième, D.; García-Navarro, P.; Murillo, J. Influence of Mesh Structure on 2D Full Shallow Water Equations and SCS Curve Number Simulation of Rainfall/Runoff Events. J. Hydrol. 2012, 448–449, 39–59. [Google Scholar] [CrossRef]
- Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling Land Use Change Impacts on Hydrology and the Use of Landscape Metrics as Tools for Watershed Management: The Case of an Ungauged Catchment in the Philippines. Land Use Policy 2018, 72, 116–128. [Google Scholar] [CrossRef]
- Acero Triana, J.S.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Beyond Model Metrics: The Perils of Calibrating Hydrologic Models. J. Hydrol. 2019, 578, 124032. [Google Scholar] [CrossRef]
- Johnston, R.; Smakhtin, V. Hydrological Modeling of Large River Basins: How Much Is Enough? Water Resour. Manag. 2014, 28, 2695–2730. [Google Scholar] [CrossRef]
- Reynolds, J.E.; Halldin, S.; Seibert, J.; Xu, C.Y.; Grabs, T. Robustness of Flood-Model Calibration Using Single and Multiple Events. Hydrol. Sci. J. 2019, 6667, 842–853. [Google Scholar] [CrossRef]
- McIntyre, N.; Lee, H.; Wheater, H.; Young, A.; Wagener, T. Ensemble Predictions of Runoff in Ungauged Catchments. Water Resour. Res. 2005, 41, 1–14. [Google Scholar] [CrossRef]
- Perrin, C.; Oudin, L.; Andreassian, V.; Rojas-Serna, C.; Michel, C.; Mathevet, T. Impact of Limited Streamflow Data on the Efficiency and the Parameters of Rainfall-Runoff Models. Hydrol. Sci. J. 2007, 52, 131–151. [Google Scholar] [CrossRef]
- Seibert, J.; McDonnell, J.J. Gauging the Ungauged Basin: Relative Value of Soft and Hard Data. J. Hydrol. Eng. 2015, 20, A4014004. [Google Scholar] [CrossRef]
- Correa, A.; Windhorst, D.; Crespo, P.; Célleri, R.; Feyen, J.; Breuer, L. Continuous versus Event-Based Sampling: How Many Samples Are Required for Deriving General Hydrological Understanding on Ecuador’s Páramo Region? Hydrol. Process. 2016, 30, 4059–4073. [Google Scholar] [CrossRef]
- Seibert, J.; Beven, K.J. Gauging the Ungauged Basin: How Many Discharge Measurements Are Needed? Hydrol. Earth Syst. Sci. 2009, 13, 883–892. [Google Scholar] [CrossRef]
- Juston, J.; Seibert, J.; Johansson, P.-O. Temporal Sampling Strategies and Uncertainty in Calibrating a Conceptual Hydrological Model for a Small Boreal Catchment. Hydrol. Process. 2009, 23, 3093–3109. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall Hotspots over the Southern Tropical Andes: Spatial Distribution, Rainfall Intensity, and Relations with Large-Scale Atmospheric Circulation. Water Resour. Res. 2015, 51, 3459–3475. [Google Scholar] [CrossRef]
- GAD-TENA. Actualización Plan de Desarrollo y Ordenamiento Territorial de Tena; Gobierno Municipal de Tena: Tena, Ecuador, 2014. [Google Scholar]
- Cruz-Cueva, G. Elaboración de Un Plan de Contingencia Por Inundación Del Río Tena En Los Barrios: Bellavista Las Hierbitas Tereré y Barrio Central de La Ciudad de Tena. PUCE: Quito, Ecuador, 2016. (In Spanish) [Google Scholar]
- Moreno, J.; Yerovi, F.; Herrera, M.; Yánez, D.; Espinosa, J.; Sánchez, D.; Merlo, J.; Haro, R.; Acosta, M.; Bernal, G. Soils from the Amazonia; Springer: Madison, WI, USA, 2018; pp. 79–111. [Google Scholar] [CrossRef]
- Tobón, C. Los Bosques Andinos y El Agua; ECOBONA: Quito, Ecuador, 2008. [Google Scholar]
- MAGAP-SIGTIERRAS. Generación de Geoinformación para la Gestión del Territorio a Nivel Nacional. Available online: metadatos.sigtierras.gob.ec (accessed on 12 July 2020). (In Spanish).
- Cadilhac, L.; Torres, R.; Calles, J.; Vanacker, V.; Calderón, E. Desafíos Para La Investigación Sobre El Cambio Climático En Ecuador. Neotrop. Biodivers. 2017, 3, 168–181. [Google Scholar] [CrossRef]
- INEC. Censo de Poblacion y Vivienda 2010. Available online: https://www.ecuadorencifras.gob.ec/estadisticas/ (accessed on 12 July 2020). (In Spanish).
- Palomino-Lemus, R.; Córdoba-Machado, S.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. Climate Change Projections of Boreal Summer Precipitation over Tropical America by Using Statistical Downscaling from CMIP5 Models. Environ. Res. Lett. 2017, 12, 124011. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Sorribas, M.V.; Paiva, R.C.D.D.; Melack, J.M.; Bravo, J.M.; Jones, C.; Carvalho, L.; Beighley, E.; Forsberg, B.; Costa, M.H. Projections of Climate Change Effects on Discharge and Inundation in the Amazon Basin. Clim. Chang. 2016, 136, 555–570. [Google Scholar] [CrossRef]
- Armenta, E.; Villa, L.; Jácome, P. Proyecciones Climáticas De Precipitación Y Temperatura Para Ecuador, Bajo Distintos Escenarios De Cambio Climático.; Ministerio de Ambiente: Quito, Ecuador, 2016. (In Spanish) [Google Scholar]
- USGS. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 6 June 2020).
- Sommer Messtechnick. RQ-30, RQ-30a, Discharge Measurement System User Manual.; Sommer GmbH: Koblach, Austria, 2014; Available online: https://www.sommer.at/en/products/water/rq-30-rq-30a (accessed on 12 July 2020).
- INAMHI. Determinación de Ecuaciones Para El Cálculo de Intensidades Máximas de Precipitación; Instituto Nacional de Meteorología e Hidrología (INAMHI): Quito, Ecuador, 2019; Available online: www.serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_DE_INTENSIDADES_V_FINAL.pdf (accessed on 12 July 2020). (In Spanish)
- Scharffenberg, B.; Bartles, M.; Braurer, T.; Fleming, M.; Karlovits, G. Hydrologic Modeling System HEC-HMS User’s Manual; No. 4.2; Hydrologic Engineering Center: Davis, CA, USA, 2016; Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.2.pdf (accessed on 12 July 2020).
- Hawkins, R.H.; Ward, T.J.; Woodward, D.E.; Van Mullem, J.A. Curve Number Hydrology; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008. [Google Scholar]
- Cronshey, R. Urban Hydrology for Small Watersheds; U.S. Dept. of Agriculture Soil Conservation Service Engineering Division; United States Department of Agriculture (USDA): Washington, DC, USA, 1986. [Google Scholar]
- Merwade, V. Terrain Processing and HMS-Model Development Using GeoHMS Load the Data to ArcMap; Purdue University: West Lafayette, IN, USA, 2012; Available online: https://web.ics.purdue.edu/~vmerwade/education/geohms.pdf (accessed on 12 July 2020).
- Bondelid, T.R.; McCuen, R.H.; Jackson, T.J. Sensitivity of SCS Models to Curve Number Variation. J. Am. Water Resour. Assoc. 1982, 18, 111–116. [Google Scholar] [CrossRef]
- Fernandez Nualart, M.; Bateman Pinzon, A. Recuperación Paisajística y Estudio de Inundabilidad Del Sistema Hídrico a Su Paso Por Tena; Polytechnic University of Catalonia (UPC): Barcelona, Spain, 2004. (In Spanish) [Google Scholar]
- Vélez Upegui, J.J.; Botero Gutiérrez, A. Estimación Del Tiempo de Concentración y Tiempo de Rezago En La Cuenca Experimental Urbana de La Quebrada San Luis, Manizales. Dyna 2011, 165, 59. (In Spanish) [Google Scholar]
- Scharffenberg, W.A. Model Optimization. In Hydrologic Modeling System HEC-HMS, User Manual; US-Army-Corps-Engineers, Ed.; Hydrologic Engineering Center: Davis, CA, USA, 2016; pp. 383–419. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Shokory, J.A.N.; Tsutsumi, J.G.; Sakai, K. Flood Modeling and Simulation Using IRIC: A Case Study of Kabul City. E3S Web Conf. 2016, 7, 04003. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushal, D.R.R.; Gosain, A.K.K. Hydrodynamic Simulation of Urban Stormwater Drain (Delhi City, India) Using IRIC Model. J. Appl. Res. Technol. 2018, 16, 67–78. [Google Scholar] [CrossRef]
- Chow, V. Hidráulica de Canales Abiertos; McGraw Hill: Bogotá, Colombia, 1994. (In Spanish) [Google Scholar]
- van der Sande, C.J.; de Jong, S.M.; de Roo, A.P.J. A Segmentation and Classification Approach of IKONOS-2 Imagery for Land Cover Mapping to Assist Flood Risk and Flood Damage Assessment. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 217–229. [Google Scholar] [CrossRef]
- Horritt, M.S.S.; Bates, P.D.D. Evaluation of 1D and 2D Numerical Models for Predicting River Flood Inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Timbe, L.; Willems, P. Desempeño de Modelos Hidráulicos 1D y 2D Para La Simulación de Inundaciones. Maskana 2011, 2, 91–98. (In Spanish) [Google Scholar] [CrossRef]
- Domeneghetti, A.; Castellarin, A.; Tarpanelli, A.; Moramarco, T. Investigating the Uncertainty of Satellite Altimetry Products for Hydrodynamic Modelling. Hydrol. Process. 2015, 29, 4908–4918. [Google Scholar] [CrossRef]
- Ciervo, F.; Papa, M.N.; Medina, V.; Bateman, A. Simulation of Flash Floods in Ungauged Basins Using Post-Event Surveys and Numerical Modelling. J. Flood Risk Manag. 2015, 8, 343–355. [Google Scholar] [CrossRef]
- Mtamba, J.; van der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling. Remote Sens. 2015, 7, 836–864. [Google Scholar] [CrossRef]
- Ponce, V.M. Kinematic Wave Controversy. J. Hydraul. Eng. 1991, 117, 511–525. [Google Scholar] [CrossRef]
- Barati, R.; Rahimi, S.; Akbari, G.H. Analysis of Dynamic Wave Model for Flood Routing in Natural Rivers. Water Sci. Eng. 2012, 5, 243–258. [Google Scholar] [CrossRef]
- Liu, Z.; Merwade, V.; Jafarzadegan, K. Investigating the Role of Model Structure and Surface Roughness in Generating Flood Inundation Extents Using One- and Two-Dimensional Hydraulic Models. J. Flood Risk Manag. 2019, 12, e12347. [Google Scholar] [CrossRef]
- Neto, A.; Batista, L.; Coutinho, R. Methodologies for Generation of Hazard Indicator Maps and Flood Prone Areas: Municipality of Ipojuca/PE. Rev. Bras. Recur. Hídricos 2016, 21, 377–390. [Google Scholar] [CrossRef]
- Courtel, F.; López, J.; Bello, M.; Noya, M. Mapas de Amenaza Por Inundaciones y Aludes Torrenciales En El Valle de Caracas. In Proceedings of the 32nd Congreso Latinoamericano De Hidráulica, Ciudad Guayana, Venezuela, 1−5 October 2006. (In Spanish). [Google Scholar]
- Cançado, V.; Brasil, L.; Nascimento, N.; Guerra, A. Flood Risk Assessment in an Urban Area: Measuring Hazard and Vulnerability. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31 August–5 September 2008; IWA Publishing: Edinburgh, Scotland, UK, 2008; pp. 1–10. [Google Scholar]
- Da Silva, M.G.; De-Oliveira, A.; de Jesus Neves, R.J.; Nascimento, A.; Almeida, C.; Faccioli, G.G. Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. J. Environ. Prot. 2015, 6, 837–850. [Google Scholar] [CrossRef]
- van Liew, M.W.; Arnold, J.G.; Bosch, D.D. Problems and Potential of Autocalibrating a Hydrologic Model. Trans. ASAE 2005, 48, 1025–1040. [Google Scholar] [CrossRef]
- Bin, L.; Xu, K.; Xu, X.; Lian, J.; Ma, C. Development of a Landscape Indicator to Evaluate the Effect of Landscape Pattern on Surface Runoff in the Haihe River Basin. J. Hydrol. 2018, 566, 546–557. [Google Scholar] [CrossRef]
- Asano, Y.; Uchida, T. The Roles of Channels and Hillslopes in Rainfall/Run-off Lag Times during Intense Storms in a Steep Catchment. Hydrol. Process. 2018, 32, 713–728. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Johnson, F.; White, C.J.; van Dijk, A.; Ekstrom, M.; Evans, J.P.; Jakob, D.; Kiem, A.S.; Leonard, M.; Rouillard, A.; Westra, S. Natural Hazards in Australia: Floods. Clim. Chang. 2016, 139, 21–35. [Google Scholar] [CrossRef]
- Iacob, O.; Brown, I.; Rowan, J. Natural Flood Management, Land Use and Climate Change Trade-Offs: The Case of Tarland Catchment, Scotland. Hydrol. Sci. J. 2017, 62, 1931–1948. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Iroumé, A.; Cisneros, F.; Fallas, J.; Iturraspe, R.; Novillo, M.G.; Urciuolo, A.; de Bièvre, B.; Borges, V.G.; Coello, C.; et al. Forest Impact on Floods Due to Extreme Rainfall and Snowmelt in Four Latin American Environments 1: Field Data Analysis. J. Hydrol. 2011, 400, 281–291. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A Restatement of the Natural Science Evidence Concerning Catchment-Based ‘Natural’ Flood Management in the UK. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef]
- Hejl, H.; Kans, L. Roughness Coefficient for Flooded Urban Areas. J. Res. U.S. Geol. Surv. 1977, 5, 541–545. [Google Scholar]
- Mosquera-Machado, S.; Ahmad, S. Flood Hazard Assessment of Atrato River in Colombia. Water Resour. Manag. 2007, 21, 591–609. [Google Scholar] [CrossRef]
- Arcement, G.; Schneider, V. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; United States Geological Survey (USGS): Denver, CO, USA, 1989.
- Xia, J.; Falconer, R.A.; Lin, B.; Tan, G. Numerical Assessment of Flood Hazard Risk to People and Vehicles in Flash Floods. Environ. Model. Softw. 2011, 26, 987–998. [Google Scholar] [CrossRef]
- Bocanegra, R.A.; Vallés-Morán, F.J.; Francés, F. Review and Analysis of Vehicle Stability Models during Floods and Proposal for Future Improvements. J. Flood Risk Manag. 2020, 13. [Google Scholar] [CrossRef]
- Huizinga, J.; de Moel, H.; Szewczyk, W. Glob. Flood Depth-Damage Functions: Methodology and the database with guidelines; Publications Office of the European Union: Luxemburg, 2017. [Google Scholar] [CrossRef]
- Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE). COE Cantonal Toma Resoluciones Ante emergencia en Tena. Boletín de Prensa. Available online: https://www.gestionderiesgos.gob.ec/coe-cantonal-toma-resoluciones-ante-emergencia-en-tena/ (accessed on 25 August 2020). (In Spanish).
Parameter | Description [Units] | PRB | TRB |
---|---|---|---|
A | Drainage area [km2] | 99.96 | 134.86 |
P | Perimeter [km] | 54.97 | 54.13 |
El_min | Minimum elevation [m] | 499.00 | 499.00 |
El_max | Maximum elevation [m] | 2494.00 | 2448.00 |
El_ave | Mean elevation [m] | 982.00 | 1087.00 |
Sl_min | Minimum slope [%] | 0.00 | 0.00 |
Sl_max | Maximum slope [%] | 95.93 | 106.23 |
Sl_ave | Mean slope [%] | 24.09 | 27.51 |
Lh | Hydraulic length [km] | 25.43 | 27.99 |
Le | Equivalent length [km] | 23.17 | 20.48 |
Lr | Relative length of the largest reach (Lh / A^0.5) [-]; Lr > 1: elongated basin, Lr < 1: basins prone to floods | 2.54 | 2.41 |
CN | Curve number for saturated conditions [-] | 90.00 | 87.00 |
Tc | Time of concentration [minutes] | 180.00 | 190.00 |
Lag | Lag time [minutes] | 108.00 | 114.00 |
Bf | Baseflow [m3/s] | 6.00 | 9.00 |
Event | Start (Date, Time) | End (Date, Time) | Duration (Hours) | Peak Flow (m3/s) |
---|---|---|---|---|
E1 | 21 July 2018, 12:00 | 23 July 2018, 12:00 | 48 | 714.20 |
E2 | 03 September 2018, 12:00 | 04 September 2018, 18:00 | 30 | 356.00 |
E3 | 14 October 2018, 12:00 | 15 October 2018, 08:00 | 20 | 234.80 |
E4 | 24 November 2018, 00:00 | 24 November 2018, 24:00 | 24 | 403.30 |
E5 | 07 January 2019, 12:00 | 08 January 2019, 12:00 | 24 | 435.60 |
E6 | 10 March 2019, 06:00 | 11 March 2019, 06:00 | 24 | 395.60 |
E7 | 27 April 2019, 00:00 | 27 April 2019, 24:00 | 24 | 589.80 |
E8 | 13 May 2019, 00:00 | 14 May 2019, 24:00 | 48 | 424.40 |
Flood Intensity | Depth (D) [m]-Velocity (V) [m/s] |
---|---|
High | D > 1.5 or V > 1.5 |
Medium | 0.5 < D < 1.5 or 0.5 < V < 1.5 |
Low | 0.1 < D < 0.5 and 0.1 < V < 0.5 |
Event | Observed | Simulated | ||||
---|---|---|---|---|---|---|
Time at Peak (Time) | Peak Flow (m3/s) | Runoff Volume (mm) | Time at Peak (Time) | Peak Flow (m3/s) | Runoff Volume (mm) | |
E1 | 09:24 | 714.20 | 100.66 | 09:47 | 641.10 | 83.96 |
E2 | 01:49 | 356.00 | 25.34 | 02:16 | 306.30 | 24.52 |
E3 | 23:09 | 234.80 | 16.92 | 22:42 | 263.70 | 17.54 |
E4 | 11:19 | 403.30 | 30.25 | 11:33 | 760.80 | 43.94 |
E5 | 00:09 | 435.60 | 24.1 | 01:36 | 178.10 | 18.45 |
E6 | 17:54 | 395.60 | 25.21 | 17:36 | 319.90 | 22.57 |
E7 | 14:24 | 589.80 | 33.76 | 14:53 | 178.10 | 14.63 |
E8 | 04:40 | 424.40 | 48.01 | 04:24 | 404.60 | 49.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado-Pidal, J.; Acero Triana, J.S.; Espitia-Sarmiento, E.; Jarrín-Pérez, F. Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data. Water 2020, 12, 2768. https://doi.org/10.3390/w12102768
Hurtado-Pidal J, Acero Triana JS, Espitia-Sarmiento E, Jarrín-Pérez F. Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data. Water. 2020; 12(10):2768. https://doi.org/10.3390/w12102768
Chicago/Turabian StyleHurtado-Pidal, Jorge, Juan S. Acero Triana, Edgar Espitia-Sarmiento, and Fernando Jarrín-Pérez. 2020. "Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data" Water 12, no. 10: 2768. https://doi.org/10.3390/w12102768
APA StyleHurtado-Pidal, J., Acero Triana, J. S., Espitia-Sarmiento, E., & Jarrín-Pérez, F. (2020). Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data. Water, 12(10), 2768. https://doi.org/10.3390/w12102768