Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. MENA Domain
2.2. Observed Precipitation, Winds, and Mean Sea Level Pressure
2.3. Integrated Water Vapor Transport (IVT)
2.4. AR Detection Algorithm
2.5. Climate Model Simulations of Atmospheric Rivers and Precipitation
3. Results
3.1. Individual AR Events in MENA
3.2. Climatology of ARs and Precipitation in the MENA Region
3.3. Projected Future AR Frequency and Precipitation in MENA
3.4. Statistical Significance of Expected Changes
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hasanean, H.M. Middle East Meteorology. 2004. Available online: http://www.eolss.net/ (accessed on 7 August 2015).
- AMS Glossary of Meteorology. Atmospheric River. 2017. Available online: http://glossary.ametsoc.org/wiki/Atmospheric_river (accessed on 12 August 2020).
- Wang, C.-C.; Lin, B.-X.; Chen, C.-T.; Lo, S.-H. Quantifying the Effects of Long-Term Climate Change on Tropical Cyclone Rainfall Using a Cloud-Resolving Model: Examples of Two Landfall Typhoons in Taiwan. J. Clim. 2014, 28, 66–85. [Google Scholar] [CrossRef]
- Shepherd, T.G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar] [CrossRef]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar] [CrossRef]
- Massoud, E.C.; Huisman, J.; Benincà, E.; Dietze, M.; Bouten, W.; Vrugt, J.A. Probing the limits of predictability: Data assimilation of chaotic dynamics in complex food webs. Ecol. Lett. 2017, 21, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M. Climate Extremes over the Arabian Peninsula Using RegCM4 for Present Conditions Forced by Several CMIP5 Models. Atmosphere 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Chang. Res. 2018, 9, 66–80. [Google Scholar] [CrossRef]
- Ozturk, T.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4. Atmos. Res. 2018, 206, 87–107. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Espinoza, V.; Waliser, D.E.; Guan, B.; Lavers, D.A.; Ralph, F.M. Global Analysis of Climate Change Projection Effects on Atmospheric Rivers. Geophys. Res. Lett. 2018, 45, 4299–4308. [Google Scholar] [CrossRef]
- Massoud, E.C.; Espinoza, V.; Guan, B.; Waliser, D.E. Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth’s Futur. 2019, 7, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.E. Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Clim. Chang. 2004, 62, 283–317. [Google Scholar] [CrossRef]
- Guan, B.; Molotch, N.P.; Waliser, D.E.; Fetzer, E.; Neiman, P.J. Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Neiman, P.J.; Schick, L.J.; Ralph, F.M.; Hughes, M.; Wick, G.A. Flooding in Western Washington: The Connection to Atmospheric Rivers. J. Hydrometeorol. 2011, 12, 1337–1358. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B. Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, M.D. Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls on Soil Moisture and Runoff in Coastal Northern California. J. Hydrometeorol. 2013, 14, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Allan, R.P.; Villarini, G.; Lloyd-Hughes, B.; Brayshaw, D.J.; Wade, A.J. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett. 2013, 8, 034010. [Google Scholar] [CrossRef]
- Sodemann, H.; Stohl, A. Moisture Origin and Meridional Transport in Atmospheric Rivers and Their Association with Multiple Cyclones. Mon. Weather. Rev. 2013, 141, 2850–2868. [Google Scholar] [CrossRef] [Green Version]
- Viale, M.; Nuñez, M.N. Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics. J. Hydrometeorol. 2011, 12, 481–507. [Google Scholar] [CrossRef]
- Paltan, H.; Waliser, D.; Lim, W.H.; Guan, B.; Yamazaki, D.; Pant, R.; Dadson, S. Global Floods and Water Availability Driven by Atmospheric Rivers. Geophys. Res. Lett. 2017, 44, 10387–10395. [Google Scholar] [CrossRef]
- Nash, D.; Waliser, D.E.; Guan, B.; Ye, H.; Ralph, F.M.; Ralph, M. The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate. J. Geophys. Res. Atmos. 2018, 123, 6804–6821. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Huning, L.S.; Margulis, S.A.; Guan, B.; Waliser, D.E.; Neiman, P.J. Implications of Detection Methods on Characterizing Atmospheric River Contribution to Seasonal Snowfall Across Sierra Nevada, USA. Geophys. Res. Lett. 2017, 44, 10445–10453. [Google Scholar] [CrossRef]
- Huning, L.S.; Guan, B.; Waliser, D.E.; Lettenmaier, D.P. Sensitivity of Seasonal Snowfall Attribution to Atmospheric Rivers and Their Reanalysis-Based Detection. Geophys. Res. Lett. 2019, 46, 794–803. [Google Scholar] [CrossRef]
- Leung, L.R.; Qian, Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.D. Storms, floods, and the science of atmospheric rivers. Eos 2011, 92, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Allan, R.P.; Wood, E.F.; Villarini, G.; Brayshaw, D.J.; Wade, A.J. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Waliser, D.; Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Dettinger, M.D. Atmospheric Rivers as Drought Busters on the U.S. West Coast. J. Hydrometeorol. 2013, 14, 1721–1732. [Google Scholar] [CrossRef]
- Payne, A.E.; Demory, M.-E.; Leung, L.R.; Ramos, A.M.; Shields, C.A.; Rutz, J.J.; Siler, N.; Villarini, G.; Hall, A.; Ralph, F.M. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 2020, 1, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lu, J.; Leung, L.R. Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe. J. Clim. 2016, 29, 6711–6726. [Google Scholar] [CrossRef]
- Ramos, A.M.; Tomé, R.; Trigo, R.M.; Liberato, M.L.; Pinto, J.G. Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophys. Res. Lett. 2016, 43, 9315–9323. [Google Scholar] [CrossRef]
- Shields, C.A.; Kiehl, J.T. Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett. 2016, 43, 8775–8782. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Das, T.; Maurer, E.P.; Miller, N.L.; Bao, Y.; Kanamitsu, M.; Yoshimura, K.; Snyder, M.A.; Sloan, L.C.; et al. The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California. J. Clim. 2013, 26, 5879–5896. [Google Scholar] [CrossRef]
- Payne, A.E.; Magnusdottir, G. An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos. 2015, 120, 11–173. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.D.; Mass, C.F.; Salathé, E.P. Changes in Winter Atmospheric Rivers along the North American West Coast in CMIP5 Climate Models. J. Hydrometeorol. 2015, 16, 118–128. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, J.; Leung, L.R.; Yang, Q.; Hagos, S.; Qian, Y. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett. 2015, 42, 7179–7186. [Google Scholar] [CrossRef]
- Radić, V.; Cannon, A.J.; Menounos, B.; Gi, N. Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmos. 2015, 120, 9279–9302. [Google Scholar] [CrossRef] [Green Version]
- Hagos, S.M.; Leung, L.R.; Yoon, J.; Lu, J.; Gao, Y. A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett. 2016, 43, 1357–1363. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.A.; Kiehl, J.T. Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophys. Res. Lett. 2016, 43, 7767–7773. [Google Scholar] [CrossRef]
- Gershunov, A.; Shulgina, T.; Clemesha, R.E.S.; Guirguis, K.; Pierce, D.W.; Dettinger, M.D.; Lavers, D.A.; Cayan, D.R.; Polade, S.; Kalansky, J.; et al. Precipitation regime change in Western North America: The role of Atmospheric Rivers. Sci. Rep. 2019, 9, 9944. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Swain, D.L.; Hall, A.D. Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Sci. Adv. 2020, 6, eaba1323. [Google Scholar] [CrossRef] [PubMed]
- Almazroui, M. RegCM4 in climate simulation over CORDEX-MENA/Arab domain: Selection of suitable domain, convection and land-surface schemes. Int. J. Clim. 2015, 36, 236–251. [Google Scholar] [CrossRef]
- Almazroui, M. Temperature Changes over the CORDEX-MENA Domain in the 21st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Adv. Meteorol. 2019, 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Mercogliano, P.; Rianna, G.; Panitz, H.J. Analysis of ERA-Interim-driven COSMO-CLM simulations over Middle East–North Africa domain at different spatial resolutions. Int. J. Climatol. 2016, 36, 3346–3369. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Akbary, M.; Salimi, S.; Hosseini, S.A.; Hosseini, M. Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region. Int. J. Clim. 2019, 39, 3976–3986. [Google Scholar] [CrossRef]
- Esfandiari, N.; Lashkari, H. Identifying atmospheric river events and their paths into Iran. Theor. Appl. Clim. 2020, 140, 1125–1137. [Google Scholar] [CrossRef]
- Esfandiari, N.; Lashkari, H. The effect of atmospheric rivers on cold-season heavy precipitation events in Iran. J. Water Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Dezfuli, A.K. Rare Atmospheric River Caused Record Floods across the Middle East. Bull. Am. Meteorol. Soc. 2020, 101, E394–E400. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Tracking Atmospheric Rivers Globally: Spatial Distributions and Temporal Evolution of Life Cycle Characteristics. J. Geophys. Res. Atmos. 2019, 124, 12523–12552. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef] [Green Version]
- Massoud, E.C.; Purdy, A.J.; Miro, M.E.; Famiglietti, J. Projecting groundwater storage changes in California’s Central Valley. Sci. Rep. 2018, 8, 12917. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Waliser, D.E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 2015, 120, 12514–12535. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E.; Ralph, F.M. An Intercomparison between Reanalysis and Dropsonde Observations of the Total Water Vapor Transport in Individual Atmospheric Rivers. J. Hydrometeorol. 2018, 19, 321–337. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009.
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.25: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data; GPCC: Offenbach, Germany, 2018. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.H.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar] [CrossRef]
- Gorodetskaya, I.V.; Tsukernik, M.; Claes, K.; Ralph, M.F.; Neff, W.D.; Van Lipzig, N.P.M. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 2014, 41, 6199–6206. [Google Scholar] [CrossRef] [Green Version]
- Hibbard, K.A.; Meehl, G.A.; Cox, P.M.; Friedlingstein, P. A strategy for climate change stabilization experiments. Eos Trans. Am. Geophys. Union 2007, 88, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Kathy, H. Summary Report: A Strategy for Climate Change Stabilization Experiments with AOGCMs and ESMs: Aspen Global Change Institute 2006 Session, Earth System Models: The Next Generation (Aspen, Colorado, 30 July–5 August 2006); World Climate Research Programme: Aspen, CO, USA, 2007. [Google Scholar]
- Meehl, A.G.; Goddard, L.; Murphy, J.; Stouffer, R.J.; Boer, G.; Danabasoglu, G.; Dixon, K. Decadal prediction: Can it be skillful? Bull. Am. Meteorol. Soc. 2009, 90, 1467–1486. [Google Scholar] [CrossRef]
- Lavers, D.A.; Ralph, F.M.; Waliser, D.E.; Gershunov, A.; Dettinger, M.D. Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett. 2015, 42, 5617–5625. [Google Scholar] [CrossRef] [Green Version]
- United Nations Office for the Coordination of Humanitarian Affairs. Disasters. Iran: Floods–March 2019. Available online: https://reliefweb.int/disaster/fl-2019-000022-irn (accessed on 1 October 2020).
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Chang. 2018, 8, 427–433. [Google Scholar] [CrossRef]
- Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.M.; Drumond, A.; Reason, C.; Taschetto, A.S.; Ramos, A.M.; Kumar, R.; Marengo, J.A. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annu. Rev. Environ. Resour. 2016, 41, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, D.; Ezber, Y.; Sen, O.L. Role of the East Asian trough on the eastern Mediterranean temperature variability in early spring and the extreme case of 2004 warm spell. Clim. Dyn. 2019, 53, 2309–2326. [Google Scholar] [CrossRef]
- Ziv, B.; Dayan, U.; Sharon, D. A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis. Theor. Appl. Clim. 2004, 88, 53–63. [Google Scholar] [CrossRef]
- Tyrlis, E.; Lelieveld, J.; Steil, B. The summer circulation over the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon. Clim. Dyn. 2012, 40, 1103–1123. [Google Scholar] [CrossRef] [Green Version]
- Heydarizad, M.; Raeisi, E.; Sorí, R.; Gimeno, L. Developing Meteoric Water Lines for Iran Based on Air Masses and Moisture Sources. Water 2019, 11, 2359. [Google Scholar] [CrossRef] [Green Version]
- Terink, W.; Immerzeel, W.W.; Droogers, P. Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int. J. Clim. 2013, 33, 3055–3072. [Google Scholar] [CrossRef]
- Zappa, G.; Hawcroft, M.K.; Shaffrey, L.; Black, E.; Brayshaw, D.J. Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim. Dyn. 2014, 45, 1727–1738. [Google Scholar] [CrossRef] [Green Version]
- Vrugt, A.J.; Massoud, E.C. Uncertainty quantification of complex system models: Bayesian Analysis. In Handbook of Hydrometeorological Ensemble Forecasting; Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L., Schaake, J.C., Eds.; Springer-Verlag GmbH Germany: Heidelberg, Germany, 2018. [Google Scholar]
- Lee, H.; Goodman, A.; McGibbney, L.; Waliser, D.E.; Kim, J.; Loikith, P.C.; Gibson, P.B.; Massoud, E.C. Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: An enabling tool for facilitating regional climate studies. Geosci. Model Dev. 2018, 11, 4435–4449. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.B.; Waliser, D.E.; Lee, H.; Tian, B.; Massoud, E. Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. J. Hydrometeorol. 2019, 20, 1339–1357. [Google Scholar] [CrossRef]
- Massoud, E.C.; Lee, H.; Gibson, P.; Loikith, P.; Waliser, D.E. Bayesian Model Averaging of Climate Model Projections Constrained by Precipitation Observations over the Contiguous United States. J. Hydrometeorol. 2020, 1–47. [Google Scholar] [CrossRef]
- Neelin, J.D.; Langenbrunner, B.; Meyerson, J.E.; Hall, A.; Berg, N. California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. J. Clim. 2013, 26, 6238–6256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoud, E.; Massoud, T.; Guan, B.; Sengupta, A.; Espinoza, V.; De Luna, M.; Raymond, C.; Waliser, D. Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA). Water 2020, 12, 2863. https://doi.org/10.3390/w12102863
Massoud E, Massoud T, Guan B, Sengupta A, Espinoza V, De Luna M, Raymond C, Waliser D. Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA). Water. 2020; 12(10):2863. https://doi.org/10.3390/w12102863
Chicago/Turabian StyleMassoud, Elias, Theresa Massoud, Bin Guan, Agniv Sengupta, Vicky Espinoza, Michelle De Luna, Colin Raymond, and Duane Waliser. 2020. "Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA)" Water 12, no. 10: 2863. https://doi.org/10.3390/w12102863
APA StyleMassoud, E., Massoud, T., Guan, B., Sengupta, A., Espinoza, V., De Luna, M., Raymond, C., & Waliser, D. (2020). Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA). Water, 12(10), 2863. https://doi.org/10.3390/w12102863