The Influence of Sulfate on Anaerobic Ammonium Oxidation in a Sequencing Batch Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory-Scale Bioreactor
2.2. Operational Conditions of the Laboratory-Scale SBRs
2.3. Analytical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duyar, A.; Ozdemir, S.; Akman, D.; Akgul, V.; Sahinkaya, E.; Cirik, K. Optimization of sulfide-based autotrophic denitrification process in an anaerobic baffled reactor. J. Chem. Technol. Biotechnol. 2018, 93, 754–760. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Yan, L.; Wang, A.; Gu, Y.; Lee, D. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresour. Technol. 2015, 191, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Sarti, A.; Pozzi, E.; Chinalia, F.A.; Ono, A.; Foresti, E. Microbial processes and bacterial populations associated to anaerobic treatment of sulfate-rich wastewater. Process Biochem. 2010, 45, 164–170. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Deng, Z.; Wu, C. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed. J. Environ. Sci. 2007, 19, 264–270. [Google Scholar] [CrossRef]
- Sinbuathong, N.; Khaodhiar, S.; Liengcharernsit, W.; Sirirote, P.; Watts, D. Effect of sulfate on the methanogenic activity of a bacterial culture from a brewery wastewater during glucose degradation. J. Environ. Sci. 2007, 19, 1025–1027. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, L.; Zhu, H.; Madani, R.M.A.; Liang, J. Treatment performance and microbial community under ammonium sulphate wastewater in a sulphate reducing ammonium oxidation process. Environ. Technol. 2020. [Google Scholar] [CrossRef]
- Fdz-Polanco, F.; Fdz-Polanco, M.; Fernandez, N.; Urueña, M.A.; Garcia, P.A.; Villaverde, S. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions. Water Res. 2001, 35, 1111–1114. [Google Scholar] [CrossRef]
- Kartal, B.; van Niftrik, L.; Keltjens, J.T.; Op den Camp, H.J.M.; Jetten, M.S.M. Anammox-Growth Physiology, Cell Biology, and Metabolism. Adv. Microb. Physiol. 2012, 60, 211–262. [Google Scholar]
- Liu, S.; Yang, F.; Gong, Z.; Meng, F.; Chen, H.; Xue, Y.; Furukawa, K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour. Technol. 2008, 99, 6817–6825. [Google Scholar] [CrossRef] [PubMed]
- In ‘t Zandt, M.H.; de Jong, A.E.; Slomp, C.P.; Jetten, M.S. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol. Ecol. 2018, 94, fiy064. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Wanyan, D.; Li, X.; Huang, Y. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia. Front. Environ. Sci. Eng. 2020, 14, 38. [Google Scholar] [CrossRef]
- Rikmann, E.; Zekker, I.; Tomingas, M.; Tenno, T.; Loorits, L.; Vabamäe, P.; Mandel, A.; Raudkivi, M.; Daija, L.; Kroon, K.; et al. Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters. Desalin. Water Treat. 2016, 57, 3132–3141. [Google Scholar] [CrossRef]
- Ali, M.; Okabe, S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere 2015, 141, 144–153. [Google Scholar] [CrossRef]
- Klein, K.; Kattel, E.; Goi, A.; Kivi, A.; Dulova, N.; Saluste, A.; Zekker, I.; Trapido, M.; Tenno, T. Combined treatment of pyrogenic wastewater from oil shale retorting. Oil Shale 2017, 34, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Beller, H.R.; Chain, P.S.G.; Letain, T.E.; Chakicherla, A.; Larimer, F.W.; Richardson, P.M.; Coleman, M.A.; Wood, A.P.; Kelly, D.P. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 2006, 188, 1473–1488. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, A.; Chen, C. Structure and dynamics of microbial community in the denitrifying sulfide removal process. Huanjing Kexue 2013, 34, 1190–1195. [Google Scholar] [PubMed]
- Wang, X.; Sun, G.; Zhu, Y. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. J. Soils Sed. 2017, 17, 2831–2846. [Google Scholar] [CrossRef]
- Di Capua, F.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Electron donors for autotrophic denitrification. Chem. Eng. J. 2019, 362, 922–937. [Google Scholar] [CrossRef]
- Kosugi, Y.; Matsuura, N.; Liang, Q.; Yamamoto-Ikemoto, R. Nitrogen flow and microbial community in the anoxic reactor of “Sulfate Reduction, Denitrification/Anammox and Partial Nitrification” process. Biochem. Eng. J. 2019, 151, 107304. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, L.; Wang, H.; Liang, J. Study of sulfate-reducing ammonium oxidation process and its microbial community composition. Water Sci. Technol. 2019, 79, 137–144. [Google Scholar] [CrossRef]
- Wang, D.; Liu, B.; Ding, X.; Sun, X.; Liang, Z.; Sheng, S.; Du, L. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor. Appl. Microbiol. Biotechnol. 2017, 101, 7729–7739. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, P.; He, Y.; Jin, R. Performance of sulfate-dependent anaerobic ammonium oxidation. Sci. China Ser. B 2009, 52, 86–92. [Google Scholar] [CrossRef]
- Zhao, Q.I.; Li, W.; You, S.J. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor. Water Sci. Technol. 2006, 54, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Rikmann, E.; Zekker, I.; Tomingas, M.; Tenno, T.; Menert, A.; Loorits, L.; Tenno, T. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater. Biodegradation 2012, 23, 509–524. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, L.; Madani, R.M.A.; Wang, H.; Zhu, H.; Liang, J. Effect of nitrite and nitrate on sulfate reducing ammonium oxidation. Water Sci. Technol. 2019, 80, 634–643. [Google Scholar] [CrossRef]
- Wu, L.; Yan, Z.; Li, J.; Huang, S.; Li, Z.; Shen, M.; Peng, Y. Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox. Environ. Pollut. 2020, 259, 113763. [Google Scholar] [CrossRef]
- Dapena-Mora, A.; Arrojo, B.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Improvement of the settling properties of Anammox sludge in an SBR. J. Chem. Technol. Biotechnol. 2004, 79, 1417–1420. [Google Scholar] [CrossRef]
- Greenberg, A.E.; Clesceri, L.S.; Eaton, A.D. APHA Standard Methods for the Examination of Water and Waste Water, 21st ed.; American Public Health Association, American Water Works Association, Water Pollution Control Federation: Washington, DC, USA, 2005. [Google Scholar]
- Prachakittikul, P.; Wantawin, C.; Noophan, P.; Boonapatcharoen, N. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor. J. Environ. Sci. Health 2016, 51, 220–228. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, J.X.; Zheng, P. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Sci. China Chem. 2010, 53, 645–650. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Sun, Y. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. J. Hazard. Mater. 2009, 169, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Van De Graaf, A.A.; De Bruijn, P.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 1996, 142, 2187–2196. [Google Scholar] [CrossRef] [Green Version]
Reactor | Day | Number of Cycles per Day | Time of One Cycle | SO42− Concentration in the Reactor | NH4-N Concentration in the Reactor | NO2-N Concentration in the Reactor | |||
---|---|---|---|---|---|---|---|---|---|
per Cycle | per Day | per Cycle | per Day | per Cycle | per Day | ||||
(h) | (mg/dm3) | (mg/(dm3∙d)) | (mg/dm3) | (mg/(dm3∙d)) | (mg/dm3) | (mg/(dm3∙d)) | |||
R1 | 0–90 | 4 | 6 | 11 | 44 | 38 | 152 | 50 | 200 |
R2 | 0–36 | 4 | 6 | 180 | 38 | 152 | 50 | 200 | |
37–64 | 8 | 3 | 45 | 360 | 304 | 400 | |||
65–90 | 4 | 6 | 180 | 152 | 200 |
Reactor | Influent NH4-N (mg/dm3) | Influent SO42− (mg/dm3) | NH4-N Removal Efficiency (%) | SO42− Removal Efficiency (%) | Brief Characteristics | Reference |
---|---|---|---|---|---|---|
Combining system: Upflow Anaerobic Sludge Blanket (UASB), Anoxic/Oxic Reactor (A/O), Anammox and Sulfammox Reactor (ANAOR), Anaerobic Sequencing Batch Reactor (ASBR) | 610–700 | 1870–1920 | ca. 98 | ca. 53 | Reduction of SO42− and NH4-N was considered as a combination of anammox, sulfammox, nitrification and denitrification processes. | [26] |
Continuous Flow Stirred Tank Reactor (CFSTR) | 110 | 0-110 | ca. 40 | ca. 0 | SRAO was considered as a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes. | [11] |
60 | 90 | ca. 30 | ca. 10 | |||
60 | 90 | ca. 55 | ca. 0 | |||
Self-Designed Circulating Flowreactor (SDCF) | 120 | 183 | ca. 30 | ca. 40 | These results showed that nitrogen was converted by nitrification, denitrification and conventional anammox, simultaneously with SRAO. The sulfur-based autotrophic denitrification and denitrification in the reactor were caused by the influent NO2-N. | [10] |
160 | 216 | ca. 55 | ca. 0 | |||
110 | 116 | ca. 75 | ca. 30 | |||
80 | 100 | ca. 100 | ca. 45 | |||
Self-Designed Circulating Flowreactor (SDCF) | 50 | 90 | ca. 40 | ca. 30 | Part of nitrogen was converted by nitrification–denitrification and conventional anammox, simultaneously with SRAO. | [20] |
120 | 170 | ca. 90 | ca. 30 | |||
180 | 360 | ca. 20 | ca. 5 | |||
Expanded Granular Sludge Bed (EGSB) | 166–666 | 3600 | 40–58 | 64–71 | SRB and denitrifying bacteria were mainly responsible for SO42− and nitrogen removal. | [21] |
1000–2000 | 40–70 | 66–82 | ||||
>3000 | 10–25 | 28 | ||||
Anaerobic Sequencing Batch Reactor (ASBR) | 97 | 261 | ca. 88 | ca. 19 | The presence of Planctomycetes revealed that anammox was highly involved in NH4-N removal, even without NO2-N in the feed. Other autotrophic denitrifying bacteria, related to the species Paracoccus Denitrificans, were also present. These bacteria utilize S0 as an electron donor, produce SO42− and competitively use NO2-N with anammox. | [29] |
Expanded Bed Reactor (EBR) | 229 | 163 | ca. 44 | 40 | The reduction of SO42− and NH4-N was considered as sulfammox only. | [30] |
Upflow Anaerobic Sludge Blanket Reactor (UASBR) | 50-60 | 210-240 | 40 | 30 | The reduction of SO42− and NH4-N was considered as sulfammox only. | [31] |
Non-Woven Rotating Biological Contactor (NWRBC) | ca. 198 | ca. 528 | ca. 100 | ca. 70 | The reduction of SO42− and NH4+ was considered as a sulfammox only. | [9] |
Anaerobic Attached-Growth Bioreactor (AAGB) | 50 | 57 | ca. 43 | ca. 59 | The reduction of SO42− and NH4+ was considered as a sulfammox only. | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grubba, D.; Majtacz, J. The Influence of Sulfate on Anaerobic Ammonium Oxidation in a Sequencing Batch Reactor. Water 2020, 12, 3004. https://doi.org/10.3390/w12113004
Grubba D, Majtacz J. The Influence of Sulfate on Anaerobic Ammonium Oxidation in a Sequencing Batch Reactor. Water. 2020; 12(11):3004. https://doi.org/10.3390/w12113004
Chicago/Turabian StyleGrubba, Dominika, and Joanna Majtacz. 2020. "The Influence of Sulfate on Anaerobic Ammonium Oxidation in a Sequencing Batch Reactor" Water 12, no. 11: 3004. https://doi.org/10.3390/w12113004
APA StyleGrubba, D., & Majtacz, J. (2020). The Influence of Sulfate on Anaerobic Ammonium Oxidation in a Sequencing Batch Reactor. Water, 12(11), 3004. https://doi.org/10.3390/w12113004