Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Presentation
2.2. Pilot Plant Description
2.3. Experimental Protocol
2.3.1. Operation
2.3.2. Wastewater Quality Monitoring
2.3.3. Data Analysis
3. Results and Discussion
3.1. Multistage CW Performance: Water Quality and the Removal of Physico-Chemical Pollutants
3.2. Multistage CW Performance: Enumeration and Removal of Microbiological Indicators
3.3. Effect of Operation and Design Parameters
3.4. Treated Water Disposal and Reuse on Irrigation for Agriculture
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017. In Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017; pp. 1–7. [Google Scholar]
- Nhamo, G.; Nhemachena, C.; Nhamo, S. Is 2030 too soon for Africa to achieve the water and sanitation sustainable development goal? Sci. Total Environ. 2019, 669, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Vallino, I.; Ridolfi, L.; Laio, F. Measuring economic water scarcity in agriculture: A cross-country empirical investigation. Environ. Sci. Policy 2020, 114, 73–85. [Google Scholar] [CrossRef]
- Office National de l’Assainissement du Senegal (ONAS). Available online: https://www.onas.sn/actualites/actualites-onas/assainissement-sante-publique-en-afrique (accessed on 19 April 2020).
- León, M.C. Design of a Natural Wastewater Treatment Plant for a School in Gandiol, Saint Louis, Senegal. Master’s Thesis, University of Barcelona, Barcelona, Spain, 2020. [Google Scholar]
- Alsane, S.; Moritz, G.; Seydou, N.; Mbaye, M.; Diop, C.; Strande, L. Technology development of unplanted drying beds for resource recovery from faecal sludge: Fuel production in Sub-Sahara Africa. Water Sanit. Hyg. Dev. 2015, 5, 72–80. [Google Scholar]
- Molle, P. French vertical flow constructed wetlands: A need of a better understanding of the role of the deposit layer. Wat. Sci. Tech. 2014, 69, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Bresciani, R.; Martinuzzi, R.; Cigarini, G.; Rizzo, A. Large scale application of French reed beds: Municipal wastewater treatment for a 20,000 inhabitant’s town in Moldova. Wat. Sci. Tech. 2017, 76, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Torrens, A. Report: Data Collection on NBS in Europe for Wastewater Treatment; Nature-Based Solutions for Transition to Sustainable Communities, 2020. [Google Scholar]
- Almuktar, S.; Abed, S.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrens, A.; Molle, P.; Boutin, C.; Salgot, M. Removal of bacterial and viral indicators in vertical flow constructed wetlands and intermittent sand filters. Desalination 2009, 246, 169–178. [Google Scholar] [CrossRef]
- Ndiaye, A.K. Rapport Étude Assainissement Écoles Saint Louis, Senegal. Master’s Thesis, Universite Gaston Berger, Saint Louis, Senegal, 2019. [Google Scholar]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. In Baltimore: America; Public Health Association (APHA), American Water-Works Association (AWWA) and American Environment Federation (AEF): Washington, DC, USA, 2005. [Google Scholar]
- Association Française de Normalisation. Recueil Normes & Réglementation Environment. Qualité de l’Eau; Association Française de Normalisation: Paris, France, 2005; Volume 1–2. [Google Scholar]
- Tchobanoglous, G.; Franklin, L.; Burton, E.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; Metcalf & Eddy Inc.: New York, NY, USA; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Africa Infrastructure Knowledge Program. Available online: http://infrastructureafrica.opendataforafrica.org/WSSNM2016/water-supply-and-sanitation-needs-model-wss-2016?country=1000550-senegal&indicator=1002930-water-consumption-per-capita (accessed on 23 June 2020).
- European Commission. Available online: https://ec.europa.eu/environment/marine/pdf/brochure_young_people.pdf (accessed on 29 June 2020).
- PSEAU. Available online: https://www.pseau.org/outils/ouvrages/onas_plan_directeur_d_assainissement_de_guediawaye_senegal_2017.pdf (accessed on 29 June 2020).
- Molle, P. Filtres Plantes de Roseaux: Limites Hydrauliques et Retention du Phosphore. Ph.D. Thesis, Université Montpellier II Sciences et Techniques du Languedoc, Montpellier, France, 2003. [Google Scholar]
- Torrens, A. Subsurface Flow Constructed Wetlands for the Treatment of Wastewater from Different Sources. Design and Operation. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2015. [Google Scholar]
- Morvannou, A.; Forquet, N.; Michel, S.; Troesch, S.; Molle, P. Treatment performances of French constructed wetlands: Results from a database collected over the last 30 years. Wat. Sci. Tech. 2015, 71, 1333–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrens, A.; Molle, P.; Boutin, C.; Salgot, M. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Wat. Res. 2009, 43, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Borin, M.; Politeo, M.; de Stefani, G. Performance of a hybrid constructed wetland treating piggery wastewater. Ecol. Eng. 2013, 51, 229–236. [Google Scholar] [CrossRef]
- Brissaud, F.; Salgot, M.; Folch, M.; Auset, M.; Huertas, E.; Torrens, A. Wastewater infiltration percolation for water reuse and receiving body protection: Thirteen years’ experience in Spain. Wat. Sci. Tech. 2007, 55, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Vacca, G.; Wand, H.; Nikolausz, M.; Kuschk, P.; Kästner, M. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Wat. Res. 2005, 39, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Torrens, A.; Folch, M.; Sasa, J.; Lucero, M.; Huertas, E.; Molle, P.; Boutin, C.; Salgot, M. Removal of bacterial and viral indicators in horizontal and vertical subsurface flow constructed wetlands. In Proceedings of the 12th IWA International Conference on Wetland Systems for Water Pollution Control, San Servolo, Venice, Italy, 3–8 October 2010. [Google Scholar]
- Milani, M.; Consoli, S.; Marzo, A.; Pino, A.; Randazzo, C.; Barbagallo, S.; Cirelli, G.L. Treatment of Winery Wastewater with a Multistage Constructed Wetland System for Irrigation Reuse. Water 2020, 12, 1260. [Google Scholar] [CrossRef]
- Amoah, I.D.; Reddy, P.; Seidu, R.; Stenströ, T. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: Health implications for direct and indirect exposure to the effluents. Environ. Sci. Pollut. Res. 2018, 25, 12883–12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanakis, A.; Akratos, C.; Tsihrintzis, V. Eco-Engineering Systems for Wastewater and Sludge Treatment Vertical Flow Constructed Wetlands, 1st ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Calheiros, C.; Rangel, A.; Castro, P. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Wat. Res. 2007, 41, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Molle, P.; Liénard, A.; Grasmick, A.; Iwema, A. Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Wat. Res. 2006, 40, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Norme Senegalaise NS 05-061. Eaux Uses: Norms de Rejet; Editée par l’Institut Sénégalais de Normalisation (ISN): Dakar, Senegal, 2001. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and on the Council on 412 Minimum Requirements for Water Reuse; 28.5.2018 COM (2018) 337 final 2018/0169 (COD); European Commission: Brussels, Belgium, 2018. [Google Scholar]
- World Health Organization. Health Guidelines for Use of Wastewater in Agriculture and Aquaculture; Technical Report Series 778; WHO: Geneva, Switzerland, 1989. [Google Scholar]
Stage | Filter | Filtering Layer | Plant | ||
---|---|---|---|---|---|
Height (cm) | Material | Granulometry | |||
1st VFCW | FV1a | 70 | Silex | 3–8 mm | Phragmites |
FV1b | 70 | Granite | 3–8 mm | Phragmites | |
FV1c | 15 70 | River gravel Silex | 3–8 mm 3–8 mm | Phragmites | |
2nd VFCW | FV2a | 90 | River sand | d10 = 0.27 CU = 3.6 | Phragmites |
FV2b | 70 | River sand | d10 = 0.27 CU = 3.6 | Phragmites | |
3rd HFCW | FHa | 60 | Silex | 5–15 mm | Phragmites |
FHb | 60 | Silex | 5–15 mm | Typha |
Duration (Months) | VFCW Stage 1 | VFCW Stage 2 | |||||
---|---|---|---|---|---|---|---|
Feed/Rest (days) | HL (cm/day) 1 | Batches Per Day | Feed/Rest (days) | HL (cm/day) 1 | Batches Per Day | ||
Period 1 | 3 | No rest | 6 | 10 | No rest | 9 | 10 |
Period 2 | 3 | 3.5/7 | 18 | 10 | 3.5/7 | 18 | 10 |
Parameters | Pilot Plant Influent | Pre-Treatment Effluent | Vertical Flow CW Outlet First Stage | Vertical Flow CW Outlet Second Stage | Horizontal Flow CW Outlet Third Stage | ||||
---|---|---|---|---|---|---|---|---|---|
FV1a | FV1b | FV1c | FV2a | FV2b | FHa | FHb | |||
T (°C) | 26.3 ± 1.5 | 27.1 ± 0.8 | 27.8 ± 0.9 | 27.2 ± 1.1 | 27.1 ± 1.4 | 26.1 ± 0.6 | 26.2 ± 0.5 | 24.8 ± 1.0 | 24.7 ± 1.4 |
EC (mS/cm) | 1331 ± 170 | 1420 ± 129 | 1179 ± 91 | 1314 ± 132 | 1191 ± 94 | 888.0 ± 301 | 1061 ± 122 | 1056 ± 115 | 1049 ± 142 |
pH | 7.7 ± 0.2 | 7.5 ± 0.1 | 7.8 ± 0.2 | 8.3 ± 0.1 | 8.1 ± 0.1 | 5.7 ± 0.4 | 5.8 ± 0.4 | 8.0 ± 0.2 | 8.0 ± 0.2 |
SS (mg/L) | 718.9 ± 291 | 388.8 ± 59 | 59.7 ± 31 | 64.0 ± 14 | 49.5 ± 11 | 11.9 ± 4.2 | 13.7 ± 4.3 | 9.6 ± 6.4 | 5.7 ± 2.3 |
BOD5 (mg/L) | 655.6 ± 106 | 495.5 ± 85 | 107.9 ± 68 | 113.4 ± 57 | 81.0 ± 32 | 2.4 ± 1.6 | 2.3 ± 1.7 | 3.8 ± 2.7 | 2.3 ± 1.1 |
COD (mg/L) | 1240 ± 589 | 1063 ± 293 | 239.2 ± 58 | 268.7 ± 83 | 188.5 ± 31 | 94.0 ± 36 | 82.2 ± 39 | 79.8 ± 39 | 71.3 ± 33 |
N-TN (mg/L) | 188 ± 82 | 138.2 ± 29 | 68.2 ± 17 | 73.0 ± 19 | 79.8 ± 8 | 38.6 ± 21 | 37.3 ± 17 | 24.4 ± 6.5 | 23.0 ± 9.0 |
N-NH4+ (mg/L) | 130.9 ± 68 | 99.8 ± 21 | 41.9 ± 11 | 42.8 ± 13 | 42.5 ± 14 | 4.8 ± 2.4 | 3.5 ± 2.1 | 4.1 ± 2.4 | 3.4 ± 2.9 |
N-NO3− (mg/L) | 4.3 ± 2.5 | 2.7 ± 1.3 | 21.4 ± 9.7 | 18.6 ± 8.6 | 21.3 ± 11 | 31.4 ± 12 | 29.8 ± 11 | 11.1 ± 3.1 | 12.5 ± 4.7 |
P-PO43− (mg/L) | 70.9 ± 43 | 68.7 ± 39 | 48.1 ± 25 | 53.5 ± 21 | 44.2 ± 23 | 13.0 ± 5.2 | 14.6 ± 4.8 | 5.5 ± 4.1 | 2.1 ± 1.2 |
Parameters | Pre- Treatment | Vertical Flow CW First Stage | Vertical Flow CW Second Stage | Horizontal Flow CW Third Stage | Total % Reduction | ||||
---|---|---|---|---|---|---|---|---|---|
FV1a | FV1b | FV1c | FV2a | FV2b | FHa | FHb | |||
EC | −6.7 | 16.9 | 7.5 | 16.1 | 19.7 | 13.6 | −3.2 | −2.5 | −18.7 |
SS | 45.9 | 84.7 | 83.5 | 87.3 | 79.5 | 76.3 | 25.1 | 55.6 | 98.3 |
BOD5 | 24.4 | 78.2 | 77.1 | 83.6 | 97.6 | 97.7 | 2.4 | 3.8 | 99.5 |
COD | 14.2 | 77.5 | 74.7 | 82.3 | 59.5 | 64.6 | 9.4 | 19.0 | 90.7 |
TN | 26.5 | 50.6 | 47.2 | 42.2 | 47.6 | 49.4 | 35.8 | 39.4 | 80.9 |
N-NH4+ | 23.8 | 58.0 | 57.1 | 57.4 | 88.7 | 91.7 | 1.2 | 18.1 | 95.6 |
N-NO3− | 37.2 | −692 | −588 | −690 | −53.6 | −45.8 | 63.6 | 59.2 | −304.2 |
P-PO43− | 3.1 | 30.1 | 22.2 | 35.7 | 73.3 | 69.9 | 60.1 | 84.5 | 90.7 |
Indicator | Inlet | Pre-Treatment | Vertical Flow CW First Stage | Vertical Flow CW Second Stage | Horizontal Flow CW Third Stage | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FV1a | FV1b | FV1c | FV2a | FV2b | FHa | FHb | ||||||
FC | Conc 1. (Ulog/ 100 mL) | Av | 7.5 | 6.7 | 6.6 | 6.4 | 6.4 | 3.8 | 3.7 | 1.8 | 2.0 | |
Max | 8.1 | 7.1 | 7.1 | 6.7 | 6.7 | 4.5 | 3.8 | 2.8 | 2.1 | |||
Min | 7.2 | 6.4 | 6.4 | 6.0 | 6.0 | 3.5 | 3.5 | 0.1 | 2.0 | |||
Removal | Ulog | 0.8 | 0.1 | 0.1 | 0.3 | 2.9 | 3.0 | 1.8 | 1.7 | 5.6 | ||
N. Eggs | eggs/L | Av | 13 2 | 5 3 | 0.7 3 | 0 | 0 | 0 | 0 | 0 | 0 | |
Removal | % | 61 | 86 | 100 | 100 | 100 | 100 | - | - | 100 |
Parameters | SS | BOD5 | COD | N-NH4+ | P-PO43− | Fecal Coliforms | |
---|---|---|---|---|---|---|---|
Variable | |||||||
Filtering Material (FV1a, FV1b, FV1c) (silex, granite, silex + river gravel) | S | S | S | - | S | S | |
Filtering Media Depth (FV2a, FV2b) (70 cm, 90 cm sand) | - | - | - | - | - | - | |
Plant Species (FHa, FHb) (Phragmites, Typha) | S | S | S | S | S | - | |
Operational Modes in Vertical Filters (no resting/sequential feeding) | - | - | S | S | - | S |
Parameters | Horizontal Flow CW Outlet Third Stage | Senegalese Norms for Disposal Media (NS 05-061, 2001) | WHO Recommendations for Water Reuse in Unrestricted Irrigation | European Legislation for Water Reuse in Irrigation | |
---|---|---|---|---|---|
FHa | FHb | ||||
SS (mg/L) | 9.6 | 5.7 | 40 | 10 a–35 b,c,d | |
BOD5 (mg/L) | 3.8 | 2.3 | 50 | 10 a–25 b,c,d | |
COD (mg/L) | 79.8 | 71.3 | 200 | ||
TN (mg/L) | 24.4 | 23.0 | 30 | ||
N-NH4+ (mg/L) | 4.1 | 3.4 | |||
N-NO3− (mg/L) | 11.1 | 12.5 | |||
P-PO43− (mg/L) | 5.5 | 2.1 | 10 | ||
FC (CFU/100 mL) | 180 | 200 | 2000 | 1000 | 10 a-100 b-1000 c-10,000 d |
Helminth Eggs (eggs/L) | 0 | 0 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrens, A.; de la Varga, D.; Ndiaye, A.K.; Folch, M.; Coly, A. Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water 2020, 12, 3139. https://doi.org/10.3390/w12113139
Torrens A, de la Varga D, Ndiaye AK, Folch M, Coly A. Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water. 2020; 12(11):3139. https://doi.org/10.3390/w12113139
Chicago/Turabian StyleTorrens, Antonina, David de la Varga, Abdou Khafor Ndiaye, Montserrat Folch, and Adrien Coly. 2020. "Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal" Water 12, no. 11: 3139. https://doi.org/10.3390/w12113139
APA StyleTorrens, A., de la Varga, D., Ndiaye, A. K., Folch, M., & Coly, A. (2020). Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water, 12(11), 3139. https://doi.org/10.3390/w12113139