Systemic Inequity in Urban Flood Exposure and Damage Compensation
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Urban Drainage Systems
2.2. Damage Claim Process
2.3. Equity and Inequity
3. Methodology
4. Results
4.1. Distribution of Damage Claims and Exposure
4.2. Distribution of Damage Claims from Property Owners and the Rate of Approval
4.3. Observed Damage Claim Procedure
4.3.1. Procedure for the Combined Sewer System
4.3.2. Procedure for the Separated Sewer System
5. Discussion
5.1. Systemic Inequity of Flood Exposure
5.2. Systemic Inequity of Damage Compensation
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houston, D.; Werritty, A.; Bassett, D.; Geddes, A.; Hoolachan, A.; McMillan, M. Pluvial (Rain-Related) Flooding in Urban Areas: The Invisible Hazard; Joseph Rowntree Foundation: York, UK, 2011. [Google Scholar]
- Nicklin, H.; Leicher, A.M.; Dieperink, C.; Van Leeuwen, K. Understanding the costs of inaction-An assessment of pluvial flood damages in two European cities. Water 2019, 11, 801. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.; Ramos, C. The potential of two types of urban flooding to cause material damages in Lisbon, Portugal. Int. J. Saf. Secur. Eng. 2017, 7, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Van Ootegem, L.; Verhofstadt, E.; Van Herck, K.; Creten, T. Multivariate pluvial flood damage models. Environ. Impact Assess. Rev. 2015, 54, 91–100. [Google Scholar] [CrossRef]
- Bouwer, L.M. Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure. Risk Anal. 2013, 33, 915–930. [Google Scholar] [CrossRef]
- Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016, 16, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef]
- Fratini, C.F.; Geldof, G.D.; Kluck, J.; Mikkelsen, P.S. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J. 2012, 9, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Glaas, E.; Neset, T.S.; Kjellström, E.; Almås, A.J. Increasing house owners adaptive capacity: Compliance between climate change risks and adaptation guidelines in Scandinavia. Urban Clim. 2015, 14, 41–51. [Google Scholar] [CrossRef]
- Nie, L.; Lindholm, O.; Lindholm, G.; Syversen, E. Impacts of climate change on urban drainage systems—A case study in Fredrikstad, Norway. Urban Water J. 2009, 6, 323–332. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Frostick, L.E. The Hull floods of 2007: Implications for the governance and management of urban drainage systems. J. Flood Risk Manag. 2010, 3, 223–231. [Google Scholar] [CrossRef]
- Rözer, V.; Müller, M.; Bubeck, P.; Kienzler, S.; Thieken, A.; Pech, I.; Schröter, K.; Buchholz, O.; Kreibich, H. Coping with pluvial floods by private households. Water 2016, 8, 304. [Google Scholar]
- Zhou, Q.; Panduro, T.E.; Thorsen, B.J.; Arnbjerg-Nielsen, K. Verification of flood damage modelling using insurance data. Water Sci. Technol. 2013, 68, 425–432. [Google Scholar] [CrossRef]
- Hernebring, C.; Milotti, S.; Kronborg, S.S.; Wolf, T.; Mårtensson, E. Skyfallet i sydvästra Skåne 2014-08-31: Fokuserat mot konsekvenser och relation till regnstatistik i Malmö. VATTEN J. Water Manag. Res. 2015, 71, 85–99. [Google Scholar]
- Forrest, S.A.; Trell, E.-M.; Woltjer, J. Emerging citizen contributions, roles and interactions with public authorities in Dutch pluvial flood risk management. Int. J. Water Resour. Dev. 2020. [Google Scholar] [CrossRef] [Green Version]
- Fewtrell, L.; Kay, D. An attempt to quantify the health impacts of flooding in the UK using an urban case study. Public Health 2008, 122, 446–451. [Google Scholar] [CrossRef]
- Bernet, D.B.; Prasuhn, V.; Weingartner, R. Surface water floods in Switzerland: What insurance claim records tell us about the damage in space and time. Nat. Hazards Earth Syst. Sci. 2017, 17, 1659–1682. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Mobini, S. Pluvial, urban flood mechanisms and characteristics—Assessment based on insurance claims. J. Hydrol. 2017, 555, 51–67. [Google Scholar] [CrossRef]
- Olsson, J.; Foster, K. Short-term precipitation extremes in regional climate simulations for Sweden. Hydrol. Res. 2014, 45, 479. [Google Scholar] [CrossRef]
- Mark, O.; Weesakul, S.; Apirumanekul, C.; Aroonnet, S.B.; Djordjević, S. Potential and limitations of 1D modelling of urban flooding. J. Hydrol. 2004, 299, 284–299. [Google Scholar] [CrossRef]
- Thorndahl, S.; Beven, K.J.; Jensen, J.B.; Schaarup-Jensen, K. Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology. J. Hydrol. 2008, 357, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Haghighatafshar, S.; Nordlöf, B.; Roldin, M.; Gustafsson, L.G.; la Cour Jansen, J.; Jönsson, K. Efficiency of blue-green stormwater retrofits for flood mitigation—Conclusions drawn from a case study in Malmö, Sweden. J. Environ. Manag. 2018, 207, 60–69. [Google Scholar] [CrossRef]
- Berggren, K.; Olofsson, M.; Viklander, M.; Svensson, G.; Gustafsson, A.-M. Hydraulic Impacts on Urban Drainage Systems due to Changes in Rainfall Caused by Climatic Change. J. Hydrol. Eng. 2012, 17, 92–98. [Google Scholar] [CrossRef]
- Crichton, D. The risk triangle. In Natural Disaster Management; Tudor Rose: London, UK, 1999; pp. 102–103. ISBN 0-9536140-1-8. [Google Scholar]
- Kron, W. Flood risk = hazard • values • vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Schroeder, D.; Pisupati, B. Ethics, Justice and the Convention on Biolgical Divercity; UNEP: Nairobi, Kenya, 2010. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Geneva, Switzerland, 2012; ISBN 1107025060. [Google Scholar]
- Johnson, C.; Penning-Rowsell, E.; Parker, D. Natural and imposed injustices: The challenges in implementing “fair” flood risk management policy in England. Geogr. J. 2007, 173, 374–390. [Google Scholar] [CrossRef]
- Butler, D.; Davies, J.W. Urban Drainage, 3rd ed.; Taylor & Francis: Abingdon, UK, 2000; ISBN 978-0-203-35167-3. [Google Scholar]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Yazdanfar, Z.; Sharma, A. Urban drainage system planning and design - Challenges with climate change and urbanization: A review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Torgersen, G.; Bjerkholt, J.T.; Kvaal, K.; Lindholm, O.G. Correlation between extreme rainfall and insurance claims due to urban flooding – Case study fredrikstad, Norway. J. Urban Environ. Eng. 2015, 9, 127–138. [Google Scholar] [CrossRef]
- Torgersen, G.; Bjerkholt, J.T.; Lindholm, O.G. Addressing flooding and SuDS when improving drainage and sewerage systems-A comparative study of selected Scandinavian cities. Water 2014, 6, 839–857. [Google Scholar] [CrossRef] [Green Version]
- Mailhot, A.; Duchesne, S. Design Criteria of Urban Drainage Infrastructures under Climate Change. J. Water Resour. Plan. Manag. 2010, 136, 201–208. [Google Scholar] [CrossRef]
- Swedish Water/Svensk Vatten (SW). Drainage of Runoff and Wastewater-Functional Requirments, Hydraulic Dimensioning and Design of Public Swer System; Publication P110; Swedish Water and Wastewater Accociation (Svensk VAtten): Bromma, Sweden, 2016. (In Swedish) [Google Scholar]
- Niemczynowicz, J. Impact of the greenhouse effect on sewerage systems—Lund case study. Hydrol. Sci. J. 1989, 34, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Tuyls, D.M.; Thorndahl, S.; Rasmussen, M.R. Return period assessment of urban pluvial floods through modelling of rainfall–flood response. J. Hydroinformatics 2018, 20, 829–845. [Google Scholar] [CrossRef]
- Willems, P.; Arnbjerg-Nielsen, K.; Olsson, J.; Nguyen, V.T.V. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res. 2012, 103, 106–118. [Google Scholar] [CrossRef]
- Schmitt, T.G.; Thomas, M.; Ettrich, N. Analysis and modeling of flooding in urban drainage systems. J. Hydrol. 2004, 299, 300–311. [Google Scholar] [CrossRef]
- Green, C. Towards Sustainable Flood Risk Management. Int. J. Disaster Risk Sci. 2010, 1, 33–43. [Google Scholar]
- Olshammar, M.; Christian, B. Vattenskador orsakade av baktryck i avloppssystemet - erfarenheter, regler, hantering och tekniska lösningar (In Swedish). Water Damage Caused by Back Water Pressure in the Sewage System-Experiences, Rules, Management and Technical Solutions; IVL: Stockholm, Sweden, 2012. [Google Scholar]
- Grahn, T.; Nyberg, R. Damage assessment of lake floods: Insured damage to private property during two lake floods in Sweden 2000/2001. Int. J. Disaster Risk Reduct. 2014, 10, 305–314. [Google Scholar] [CrossRef]
- Burton, E. The compact city: Just or just compact? A preliminary analysis. Urban Stud. 2000, 37, 1969–2001. [Google Scholar] [CrossRef]
- McDermott, M.; Mahanty, S.; Schreckenberg, K. Examining equity: A multidimensional framework for assessing equity in payments for ecosystem services. Environ. Sci. Policy 2013, 33, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Grasso, M. A normative ethical framework in climate change. Clim. Chang. 2007, 81, 223–246. [Google Scholar] [CrossRef]
- Nancy Fraser. Scales of Justice: Re-Imagining Political Space in a Globalizing World; Columbia University Press: New York, NY, USA, 2009; ISBN 978-0231146814. [Google Scholar]
- Olsson, J.; Amaguchi, H.; Alsterhag, E.; Dåverhög, M.; Adrian, P.E.; Kawamura, A. Adaptation to Climate Change Impacts on Urban Storm Water: A Case Study in Arvika, Sweden. Clim. Chang. 2013, 116, 231–247. [Google Scholar] [CrossRef]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414–415, 539–549. [Google Scholar] [CrossRef]
- Soanes, C.; Stevenson, A. Oxford Dictionary of English (ODE); Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Yin, R.K. Case Study Research: Design and Methods; Sage Publishing: Newbury Park, CA, USA, 2002; ISBN 978-1452242569. [Google Scholar]
- Blumenthal, B.; Nyberg, L. The impact of intense rainfall on insurance losses in two Swedish cities. J. Flood Risk Manag. 2018, 12, e12504. [Google Scholar] [CrossRef]
- SCB, Statistikmyndigheten SCB. Available online: https://www.scb.se/ (accessed on 26 September 2019).
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 9780470114759. [Google Scholar]
- Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. Statistical Methods for Research Workers. J. R. Stat. Soc. 1939, 102, 298. [Google Scholar] [CrossRef]
- Woodside, A. Case Study Research:Theory, Methods and Practice: Theory, Methods, Practice; Emerald Group Publishing Limited: Bingley, UK, 2010; ISBN 9781849509220. [Google Scholar]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Berggren, K.; Packman, J.; Ashley, R.; Viklander, M. Climate changed rainfalls for urban drainage capacity assessment. Urban Water J. 2014, 11, 543–556. [Google Scholar] [CrossRef]
- Sørup, H.J.D.; Davidsen, S.; Löwe, R.; Thorndahl, S.L.; Borup, M.; Arnbjerg-Nielsen, K. Evaluating catchment response to artificial rainfall from four weather generators for present and future climate. Water Sci. Technol. 2018, 77, 2578–2588. [Google Scholar] [CrossRef]
- Kleidorfer, M. Uncertain Calibration of Urban Drainage Models. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, November 2009. [Google Scholar]
- Haghighatafshar, S.; Becker, P.; Moddemeyer, S.; Persson, A.; Sörensen, J.; Aspegren, H.; Jönsson, K. Paradigm shift in engineering of pluvial floods: From historical recurrence intervals to risk-based design for an uncertain future. Sustain. Cities Soc. 2020, 61, 102317. [Google Scholar] [CrossRef]
- Postgård, U. Pluviala översvämningar Konsekvenser vid skyfall över tätorter; MSB: Karlstad, Sweden, 2013. [Google Scholar]
- Svara, J.H.; Brunet, J.R. Social Equity Is a Pillar of Public Administration. J. Public Aff. Educ. 2018, 11, 253–258. [Google Scholar] [CrossRef]
- Reckien, D.; Creutzig, F.; Fernandez, B.; Lwasa, S.; Tovar-Restrepo, M.; Mcevoy, D.; Satterthwaite, D. Climate change, equity and the Sustainable Development Goals: An urban perspective. Environ. Urban. 2017, 29, 159–182. [Google Scholar] [CrossRef]
- Irwin, S.; Howlett, C.; Binns, A.D.; Sandink, D. Mitigation of Basement Flooding due to Sewer Backup: Overview and Experimental Investigation of Backwater Valve Performance. Nat. Hazards Rev. 2018, 19, 04018020. [Google Scholar] [CrossRef]
- Regueiro-Picallo, M.; Naves, J.; Anta, J.; Puertas, J.; Suárez, J. Experimental and numerical analysis of egg-shaped sewer pipes flow performance. Water 2016, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Tirado, A.A.; Morales, M.R.; Lobato-Calleros, O. Additional indicators to promote social sustainability within government programs: Equity and efficiency. Sustainability 2015, 7, 9251–9267. [Google Scholar] [CrossRef] [Green Version]
- Svensk, V. Allmänna bestämmelser VA (ABVA)–Svenskt Vatten (In Swedish); IVL Svenska miljöinstitutet: Malmö, Sweden, 2009. [Google Scholar]
- Douglas, I.; Garvin, S.; Lawson, N.; Richards, J.; Tippett, J.; White, I. Urban pluvial flooding: A qualitative case study of cause, effect and nonstructural mitigation. J. Flood Risk Manag. 2010, 3, 112–125. [Google Scholar] [CrossRef]
- Dworkin, R. What is Equality? Part 2: Equality of Resources. Philos. Public Aff. 1981, 10, 283–345. [Google Scholar]
- Arthurton, R.S. Marine-related physical natural hazards affecting coastal megacities of the Asia–Pacific region—Awareness and mitigation. Ocean Coast. Manag. 1998, 40, 65–85. [Google Scholar] [CrossRef]
- Clément, V.; Rey-Valette, H.; Rulleau, B. Perceptions on equity and responsibility in coastal zone policies. Ecol. Econ. 2015, 119, 284–291. [Google Scholar] [CrossRef]
- Fleurbaey, M. Fairness, Responsibility, and Welfare; Oxford University Press: Oxford, UK, 2008; ISBN 9780199215911. [Google Scholar]
- Penning-Rowsell, E.; Korndewal, M. The realities of managing uncertainties surrounding pluvial urban flood risk: An ex post analysis in three European cities. J. Flood Risk Manag. 2019, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Thorndahl, S.; Schaarup-Jensen, K.; Jensen, J.B. Probabilistic modelling of combined sewer overflow using the First Order Reliability Method. Water Sci. Technol. 2008, 57, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Deletic, A.; Dotto, C.B.S.; McCarthy, D.T.; Kleidorfer, M.; Freni, G.; Mannina, G.; Uhl, M.; Henrichs, M.; Fletcher, T.D.; Rauch, W.; et al. Assessing uncertainties in urban drainage models. Phys. Chem. Earth 2012, 42–44, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Freni, G.; La Loggia, G.; Notaro, V. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. Water Sci. Technol. 2010, 61, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.B. Water quality modelling: A review of uncertainty. Water Resour. Res. 1987, 23, 1393–1442. [Google Scholar] [CrossRef] [Green Version]
- Becker, P. Sustainability Science; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444627094. [Google Scholar]
- Alford, J.; Head, B.W. Wicked and less wicked problems: A typology and a contingency framework. Policy Soc. 2017, 36, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Harvey, L.; Comley, J.; Marshall, A.; Edwards, P. Organisational Capacity in Integrated Urban Water Management: The Art of Being. In Proceedings of the 6th International Water Sensitive Urban Design Conference and Hydropolis #3, Perth, Australia, 5–8 May 2009; Volume 3, pp. 1–9. [Google Scholar]
- Johannessen, Å.; Granit, J.J. Integrating Flood Risk, River Basin Management and Adaptive Management: Gaps, Barriers and Opportunities, Illustrated by a Case Study from Kristianstad, Sweden. Int. J. Water Gov. 2015, 3, 5–24. [Google Scholar]
- Mostert, E.; Raadgever, G.T. Seven rules for researchers to increase their impact on the policy process. Hydrol. Earth Syst. Sci. 2008, 12, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Pahl-Wostl, C.; Sendzimir, J.; Jeffrey, P.; Aerts, J.; Berkamp, G.; Cross, K. Managing Change toward Adaptive Water Management through Social Learning. Ecol. Soc. 2007, 12, 30. [Google Scholar] [CrossRef]
Date of Damage | Type of Sewer System | Reason for Flood Damage | Type of Claim | Decision |
---|---|---|---|---|
31 August 2014 | Combined or separated | Rainfall-related via the sewer system | Property owner | Approved or rejected |
Sewage Type | Proportion of Connected Properties | Number of Claims | Proportion of Claims |
---|---|---|---|
Combined system | 30% | 1257 | 64% |
Separated system | 70% | 702 | 36% |
Total | 100% | 1959 | 100% |
Sewage Type | Insurance Company | Property Owner | Tenants |
---|---|---|---|
Combined system | 887 | 356 | 14 |
Separated system | 448 | 219 | 35 |
Total | 1335 | 575 | 49 |
Sewage Type | Number of Claims from Property Owners | Number of Claims Approved | Number of Claims Rejected | Number of Claims with no Decision |
---|---|---|---|---|
Combined system | 356 | 165 | 184 | 7 |
Separated system | 219 | 177 | 29 | 13 |
Total | 575 | 342 | 213 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobini, S.; Becker, P.; Larsson, R.; Berndtsson, R. Systemic Inequity in Urban Flood Exposure and Damage Compensation. Water 2020, 12, 3152. https://doi.org/10.3390/w12113152
Mobini S, Becker P, Larsson R, Berndtsson R. Systemic Inequity in Urban Flood Exposure and Damage Compensation. Water. 2020; 12(11):3152. https://doi.org/10.3390/w12113152
Chicago/Turabian StyleMobini, Shifteh, Per Becker, Rolf Larsson, and Ronny Berndtsson. 2020. "Systemic Inequity in Urban Flood Exposure and Damage Compensation" Water 12, no. 11: 3152. https://doi.org/10.3390/w12113152
APA StyleMobini, S., Becker, P., Larsson, R., & Berndtsson, R. (2020). Systemic Inequity in Urban Flood Exposure and Damage Compensation. Water, 12(11), 3152. https://doi.org/10.3390/w12113152