Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and LUC Sequence
2.2. Soil Sampling
2.3. Soil Water Retention Curve Determination
2.4. Data Analysis
3. Results
3.1. Soil Pores Size Distribution and Bulk Density
3.2. Field Capacity (θFC, hFC, tFC) and Soil Water Retention Curve (SWRC)
3.3. Plant-Available Water Content (PAW) and S-Index
3.4. Relationships among Hydro-Physical Indicators and Land Use
4. Discussions
4.1. LUC Impacts on Soil Physical Quality and Water Dynamics
4.1.1. Land Transition from Native Vegetation to Pasture
4.1.2. Conversion from Pasture to Sugarcane Cultivation
4.2. Sustainable Management Practice to Enhance Water Dynamics in Sugarcane Fields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- CONAB. Acompanhamento da Safra brasileira de cana-de-açúcar. 2020, 1, 64. [Google Scholar]
- Goldemberg, J.; Mello, F.F.C.; Cerri, C.E.P.; Davies, C.A.; Cerri, C.C. Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 2014, 69, 14–18. [Google Scholar] [CrossRef]
- Andrade Junior, M.A.U.; Valin, H.; Soterroni, A.C.; Ramos, F.M.; Halog, A. Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy 2019, 134, 110958. [Google Scholar] [CrossRef] [Green Version]
- Adami, M.; Rudorff, B.F.T.; Freitas, R.M.; Aguiar, D.A.; Sugawara, L.M.; Mello, M.P. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 2012, 4, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef] [Green Version]
- De Lima, R.P.; Rolim, M.M.; da Daniel, D.; da Silva, A.R.; Mendonça, E.A.S. Compressive properties and least limiting water range of plough layer and plough pan in sugarcane fields. Soil Use Manag. 2020, 1–12. [Google Scholar] [CrossRef]
- Martíni, A.F.; Valani, G.P.; Boschi, R.S.; Bovi, R.C.; Simões da Silva, L.F.; Cooper, M. Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil Tillage Res. 2020, 204, 104751. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; de Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Cherubin, M.R. Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 2020, 370, 114353. [Google Scholar] [CrossRef]
- Canisares, L.P.; Cherubin, M.R.; Silva, L.F.S.; Franco, A.L.C.; Cooper, M.; Mooney, S.J.; Cerri, C.E.P. Soil microstructure alterations induced by land use change for sugarcane expansion in Brazil. Soil Use Manag. 2020, 36, 189–199. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.C.; Tormena, C.A.; Cerri, C.E.P.; Davies, C.A.; Cerri, C.C. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 2016, 267, 156–168. [Google Scholar] [CrossRef]
- Franco, L.C.; Cherubin, M.R.; Cerri, C.E.P.; Six, J.; Wall, D.H.; Cerri, C.C. Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change Andre. Soil Biol. Biochem. 2020, 150, 107998. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Magalhães, P.S.G.; Bordonal, R.O.; Cherubin, M.R.; Castioni, G.A.F.; Tenelli, S.; Franco, H.C.J.; Carvalho, J.L.N. Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil Tillage Res. 2019, 195, 104383. [Google Scholar] [CrossRef]
- Oliveira, D.M.S.; Cherubin, M.R.; Franco, A.L.C.; Santos, A.S.; Gelain, J.G.; Dias, N.M.S.; Diniz, T.R.; Almeida, A.N.; Feigl, B.J.; Davies, C.A.; et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry? Renew. Sustain. Energy Rev. 2019, 102, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Hess, T.M.; Sumberg, J.; Biggs, T.; Georgescu, M.; Haro-Monteagudo, D.; Jewitt, G.; Ozdogan, M.; Marshall, M.; Thenkabail, P.; Daccache, A.; et al. A sweet deal? Sugarcane, water and agricultural transformation in Sub-Saharan Africa. Glob. Environ. Chang. 2016, 39, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Corrêa, S.T.; Picoli, M.C.A.; Scanlon, B.R.; Chagas, M.F.; Duft, D.G.; de Fátima Cardosoc, T. Sugarcane land use and water resources assessment in the expansion area in Brazil. J. Clean. Prod. 2016, 133, 1318–1327. [Google Scholar] [CrossRef]
- Luz, F.B.; da Silva, V.R.; Kochem Mallmann, F.J.; Bonini Pires, C.A.; Debiasi, H.; Franchini, J.C.; Cherubin, M.R. Monitoring soil quality changes in diversified agricultural cropping systems by the Soil Management Assessment Framework (SMAF) in southern Brazil. Agric. Ecosyst. Environ. 2019, 281, 100–110. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Sugarcane yield gap analysis in Brazil—A multi-model approach for determining magnitudes and causes. Sci. Total Environ. 2018, 637–638, 1127–1136. [Google Scholar] [CrossRef]
- Meurer, K.; Barron, J.; Chenu, C.; Coucheney, E.; Fielding, M.; Hallett, P.; Herrmann, A.M.; Keller, T.; Koestel, J.; Larsbo, M.; et al. A framework for modelling soil structure dynamics induced by biological activity. Glob. Chang. Biol. 2020, 1–22. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Ghiberto, P.J.; Imhoff, S.; Libardi, P.L.; Da Silva, Á.P.; Tormena, C.A.; Pilatti, M.Á. Soil physical quality of mollisols quantified by a global index. Sci. Agric. 2015, 72, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Twarakavi, N.K.C.; Sakai, M.; Šimůnek, J. An objective analysis of the dynamic nature of field capacity. Water Resour. Res. 2009, 45, 1–9. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Dexter, A. Soil Physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Bacher, M.G.; Schmidt, O.; Bondi, G.; Creamer, R.; Fenton, O. Comparison of Soil Physical Quality Indicators Using Direct and Indirect Data Inputs Derived from a Combination of In-Situ and Ex-Situ Methods. Soil Sci. Soc. Am. J. 2019, 83, 5–17. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- Dlapa, P.; Hrinik, D.; Hrabovsky, A.; Simkovic, I.; Zarnovican, H.; Sekucia, F.; Kollar, J. The Impact of Land-Use on the Hierarchical Pore Size Loamy Soils. Water 2020, 12, 339. [Google Scholar] [CrossRef] [Green Version]
- WRB. World Reference Base for Soil Resources 2014, Update 2015, 106th ed.; FAO: Rome, Italy, 2015. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service, Ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsatured Soils. Soil. Sci. Soc. Am. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S.; Or, D. The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics. Water Resour. Res. 2014, 50, 4787–4802. [Google Scholar] [CrossRef]
- Guarracino, L. Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter α. Water Resour. Res. 2007, 43, 15–18. [Google Scholar] [CrossRef]
- Meskini-Vishkaee, F.; Mohammadi, M.H.; Neyshabouri, M.R. Revisiting the wet and dry ends of soil integral water capacity using soil and plant properties. Soil Res. 2018, 56, 331–345. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A. Application of S-Theory in the study of soil physical degradation and its consequences. L. Degrad. Dev. 2007, 18, 369–371. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- De Andrade Bonetti, J.; Anghinoni, I.; Ivonir Gubiani, P.; Cecagno, D.; de Moraes, M.T. Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil Tillage Res. 2019, 186, 280–291. [Google Scholar] [CrossRef]
- Grable, A.R.; Siemer, E.G. Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots. Soil Sci. Soc. Am. J. 1968, 32, 180–186. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Pavinato, P.S.; Cerri, C.E.P.; Six, J.; Davies, C.A.; Cerri, C.C. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Sci. Total Environ. 2015, 515–516, 30–38. [Google Scholar] [CrossRef]
- Youlton, C.; Wendland, E.; Anache, J.A.A.; Poblete-Echeverría, C.; Dabney, S. Changes in erosion and runoff due to replacement of pasture land with sugarcane crops. Sustainability 2016, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.C.; Cerri, C.E.P.; Tormena, C.A.; Cerri, C.C. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 2016, 80, 215–226. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Fontanela, E. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil Tillage Res. 2020, 196, 104447. [Google Scholar] [CrossRef]
- Youlton, C.; Bragion, A.P.; Wendland, E. Evaluación experimental de la producción de sedimentos durante el primer año después del reemplazo de pradera por caña de azúcar. Cienc. Investig. Agrar. 2016, 43, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Esteban, D.A.A.; de Souza, Z.M.; da Silva, R.B.; de Souza Lima, E.; Lovera, L.H.; de Oliveira, I.N. Impact of permanent traffic lanes on the soil physical and mechanical properties in mechanized sugarcane fields with the use of automatic steering. Geoderma 2020, 362, 114097. [Google Scholar] [CrossRef]
- da Guimarães Júnnyor, W.S.; Diserens, E.; De Maria, I.C.; Araujo-Junior, C.F.; Farhate, C.V.V.; de Souza, Z.M. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Sci. Total Environ. 2019, 681, 424–434. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Levien, R.; Trein, C.R.; de Andrade Bonetti, J.; Debiasi, H. Corn crop performance in an Ultisol compacted by tractor traffic. Pesqui. Agropecu. Bras. 2018, 53, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, L.C.; de Souza, Z.M.; Franco, H.C.J.; Otto, R.; Rossi Neto, J.; Garside, A.L.; Carvalho, J.L.N. Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Reg. 2018, 13, 15–25. [Google Scholar] [CrossRef]
- Otto, R.; Silva, A.P.; Franco, H.C.J.; Oliveira, E.C.A.; Trivelin, P.C.O. High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res. 2011, 117, 201–210. [Google Scholar] [CrossRef]
- Lozano, N.; Rolim, M.M.; Oliveira, V.S.; Tavares, U.E.; Pedrosa, E.M.R. Evaluation of soil compaction by modeling field vehicle traffic with SoilFlex during sugarcane harvest. Soil Tillage Res. 2013, 129, 61–68. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; de Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Gomes, I.F. Soil physical and mechanical attributes in response to successive harvests under sugarcane cultivation in Northeastern Brazil. Soil Tillage Res. 2019, 189, 140–147. [Google Scholar] [CrossRef]
- Jabro, J.D.; Iversen, W.M.; Stevens, W.B.; Evans, R.G.; Mikha, M.M.; Allen, B.L. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil Tillage Res. 2016, 159, 67–72. [Google Scholar] [CrossRef]
- Keller, T.; Berli, M.; Ruiz, S.; Lamandé, M.; Arvidsson, J.; Schjønning, P.; Selvadurai, A.P.S. Transmission of vertical soil stress under agricultural tyres: Comparing measurements with simulations. Soil Tillage Res. 2014, 140, 106–117. [Google Scholar] [CrossRef]
- Tenelli, S.; de Oliveira Bordonal, R.; Barbosa, L.C.; Carvalho, J.L.N. Can reduced tillage sustain sugarcane yield and soil carbon if straw is removed? Bioenergy Res. 2019, 12, 764–777. [Google Scholar] [CrossRef] [Green Version]
- Castioni, G.A.F.; Cherubin, M.R.; de Oliveira Bordonal, R.; Barbosa, L.C.; Menandro, L.M.S.; Carvalho, J.L.N. Straw Removal Affects Soil Physical Quality and Sugarcane Yield in Brazil. Bioenergy Res. 2019, 12, 789–800. [Google Scholar] [CrossRef]
- Oliveira, I.N.; Souza, Z.M.; Lovera, L.H.; Vieira Farhate, C.V.; de Souza Lima, E.; Esteban, A.D.A.; Fracarolli, J.A. Least limiting water range as influenced by tillage and cover crop. Agric. Water Manag. 2019, 225, 105777. [Google Scholar] [CrossRef]
- Aguilera Esteban, D.A.; de Souza, Z.M.; Tormena, C.A.; Lovera, L.H.; de Souza Lima, E.; de Oliveira, I.N.; de Paula Ribeiro, N. Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil Tillage Res. 2019, 187, 60–71. [Google Scholar] [CrossRef]
Site identification | Sandy soil | ||||
Geographical location | Brotas-SP (22°17′ S and 48°07′ W) | ||||
Soil classification | Arenosol [28], Quartzipsamments [29] | ||||
Soil particle-size distribution (%) | |||||
depth (cm) | NV * | PA | SCplant | SCratoon | |
0–20 | clay | 05 | 05 | 07 | 08 |
silt | 01 | 02 | 01 | 00 | |
sand | 94 | 93 | 92 | 92 | |
20–40 | clay | 07 | 10 | 12 | 15 |
silt | 02 | 02 | 02 | 00 | |
sand | 91 | 88 | 86 | 85 | |
Site identification | Clayey soil | ||||
Geographical location | Manduri-SP (23°00′ S and 49°19′ W) | ||||
Soil classification | Ferralsol [28], Oxisol [29] | ||||
Soil particle size-distribution (%) | |||||
depth (cm) | NV | PA | SCplant | SCratoon | |
0–20 | clay | 59 | 47 | 62 | 58 |
silt | 31 | 27 | 29 | 32 | |
sand | 10 | 26 | 09 | 10 | |
20–40 | clay | 61 | 50 | 65 | 58 |
silt | 30 | 25 | 29 | 31 | |
sand | 09 | 25 | 06 | 11 |
Site | Use * | Description |
---|---|---|
Sandy soil | NV | Secondary vegetation and seasonal semi-deciduous forest composed of Trichillia clausenii, Euterpe edulis, and Aspidosperma polyneuron as dominant species. |
PA | The land-use change (LUC) from NV to PA occurred in 1975. The PA was cultivated with brachiaria grass (Brachiaria decumbens) cv. Basilik, without mineral fertilizer inputs, and with an average stocking rate of ~7 animal units (AU) (7 AU ha−1) until 2018. The B. decumbens was replaced by Brachiaria brizanta cv. Marandu in 2018. During this process, 2 Mg ha−1 of lime, fertilizer inputs of 200, 135, and 115 kg ha−1 of nitrogen, phosphorus, and potassium, respectively, were applied on the soil surface. The stocking rate was kept the same as in the previous period. Cattle grazing is continuous, without a resting period for the pasture. | |
SCplant | The LUC from PA to SCplant occurred in 2018. The conversion occurred with conventional tillage by plowing and disking. In this area, 2 Mg ha−1 of lime was applied on the soil surface. Fertilizer inputs of 60, 150, and 120 kg ha−1 of nitrogen, phosphorus, and potassium, respectively, were applied in planting furrows. The sugarcane cultivar planted was IAC SP 97-4039. | |
SCratoon | The LUC from pasture to SCratoon occurred in 2002. In the following years, harvesting was done mechanically without burning or straw removal. The sugarcane renewal (replanting) was done every five years when the soil was tilled by plowing and disking. The last sugarcane planting was in 2017 with cultivar IAC SP 97-4039. After the last harvesting in 2018, 155, 41, and 86 kg ha−1 of nitrogen, phosphorus, and potassium, respectively, were applied, as mineral fertilizers. | |
Clayey soil | NV | Similar description as for Sandy soil. |
PA | The LUC from NV to PA occurred in 1970. This PA was composed of Brachiaria decumbens and poorly managed without mineral fertilizer. Cattle grazing is continuous, with an average stocking rate of 1.2 AU ha−1. | |
SCplant | The LUC from PA to SCplant occurred in 2018. This conversion occurred with conventional tillage, by plowing and disking. In this area, 2 Mg ha−1 of lime was applied on the soil surface, and 50, 150, and 50 kg ha−1 of nitrogen, phosphorus, and potassium, respectively, were applied in planting furrows. | |
SCratoon | The LUC from pasture to SCratoon occurred in 2016. Mechanical harvesting without burning or straw removal was performed in 2017 and 2018. Every year, 90 and 80 kg ha−1 of nitrogen and potassium, respectively, were applied. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonini da Luz, F.; Carvalho, M.L.; Aquino de Borba, D.; Schiebelbein, B.E.; Paiva de Lima, R.; Cherubin, M.R. Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil. Water 2020, 12, 3156. https://doi.org/10.3390/w12113156
Bonini da Luz F, Carvalho ML, Aquino de Borba D, Schiebelbein BE, Paiva de Lima R, Cherubin MR. Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil. Water. 2020; 12(11):3156. https://doi.org/10.3390/w12113156
Chicago/Turabian StyleBonini da Luz, Felipe, Martha Lustosa Carvalho, Daniel Aquino de Borba, Bruna Emanuele Schiebelbein, Renato Paiva de Lima, and Maurício Roberto Cherubin. 2020. "Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil" Water 12, no. 11: 3156. https://doi.org/10.3390/w12113156
APA StyleBonini da Luz, F., Carvalho, M. L., Aquino de Borba, D., Schiebelbein, B. E., Paiva de Lima, R., & Cherubin, M. R. (2020). Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil. Water, 12(11), 3156. https://doi.org/10.3390/w12113156