Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Lavandula angustifolia
2.1.2. Substrate
2.1.3. Water
2.1.4. Trays
2.2. Methods
2.2.1. Lavender Cultivation
2.2.2. Ash
2.2.3. Fat Content
2.2.4. Protein Content
2.2.5. Carbohydrate Content
2.2.6. Chlorophyll Content
2.2.7. Carotenoids Content
2.2.8. Determination of Ascorbic Acid
2.2.9. Analyses for Cations
2.2.10. Preparation of Extracts
2.2.11. Separation of Essential Oils
2.2.12. Gas Chromatographic Analyses
2.3. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oszczeda, Z.; Elkin, I.; Strek, W. Equipment for Treatment of Water with Plasma. Polish Patent PL 216025 B1, 28 February 2014. [Google Scholar]
- Donsbach, K.W.; Cazares, R. Process for Making Highly Oxygenated Drinking Water and Drinking Water Made by the Process. U.S. Patent 5587191A, 24 December 1996. [Google Scholar]
- Zelenak, Z.M.; Berzsenyi, L.; Abramo, F. Oxygen Enriched Liquids, Method and Apparatus for Making, and Applications Thereof. U.S. Patent 581422A, 29 September 1998. [Google Scholar]
- DeWald, J.J. Method and Apparatus for Adding Oxygen to Drinking Water. U.S. Patent 69361179B2, 30 August 2005. [Google Scholar]
- Compagnie Gervais Danone. Method for Enriching Water with Oxygen by an Electrolytic Process, Oxygen Enriched Water or Beverage and Uses Thereof. U.S. Patent 8,709,231, 19 December 2008. [Google Scholar]
- Messer Americas, FARMOX. Drop-in Oxygenation Apparatus. New, Easy-to-Deploy, Highly Efficient Solution for Oxygenation of Water. Available online: https://cdn2.hubspot.net/hubfs/189660/Messer%20US%20Website_2019/Resources/MESS-3024_FARMOX_Dropln_datasheet.pdf (accessed on 25 June 2020).
- Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, P.; Tomasik, P.; Witczak, M. Structure and physicochemical properties of water treated under nitrogen with low-temperature glow plasma. Water 2020, 12, 131. [Google Scholar] [CrossRef]
- Białopiotrowicz, T.; Ciesielski, W.; Domański, J.; Doskocz, M.; Fiedorowicz, M.; Grąż, K.; Khachatryan, K.; Kołoczek, H.; Kozak, A.; Oszczęda, Z.; et al. Structure and physicochemical properties of water treated with low-temperature low-frequency plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P.; Witczak, M. Water of increased content of molecular oxygen. Water 2020, 12, 02488. [Google Scholar] [CrossRef]
- Reszke, E.; Yelkin, I.; Oszczęda, Z. Plasming Lamp with Power Supply. Polish Patent PL 227530 B1, 26 October 2017. [Google Scholar]
- Ciesielska, A.; Ciesielski, W.; Kołoczek, H.; Kulawik, D.; Kończyk, J.; Oszczęda, Z.; Tomasik, P. Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low-frequency. Glob. J. Chem. 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P. Structure and physicochemical properties of water treated under methane with low-temperature glow plasma of low frequency. Water 2020, 12, 1638. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P. Structure and physicochemical properties of water treated under carbon dioxide with low-temperature glow plasma of low frequency. Water 2020, 12, 1920. [Google Scholar] [CrossRef]
- Jaworska, M.; Oszczęda, Z.; Tomasik, P. Water treated with low-temperature, low-pressure, low-frequency glow plasma as a stimulant of pathogenicity and reproduction of biopesticides Part I. Entomopathogenic fungi. Pol. J. Nat. Sci. 2018, 33, 561–568. [Google Scholar]
- Pater, A.; Zdaniewicz, M.; Satora, P.; Khachatryan, G.; Oszczęda, Z. Application of water treated with low-temperature low-pressure glow plasma for quality improvement of barley and malt. Biomolecules 2020, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Murawski, M.; Schwarz, T.; Grygier, J.; Patkowski, K.; Oszczęda, Z.; Jelkin, I.; Kosiek, A.; Gruszecki, T.M.; Szymanowska, A.; Skrzypek, T.; et al. The utility of nanowater for ram semen cryopreservation. Exp. Biol. Med. 2014, 240, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Szymanowicz, J.; Schwarz, T.; Murawski, M.; Małopolska, M.; Oszczęda, Z.; Tuz, R.; Nowicki, J.; Bartlewski, P.M. Storage, of bear semen at 16–18 °C in the long term commercial extender prepared with deionized water or nanowater. Anim. Reprod. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Wolski, K.; Talar-Krasa, M.; Leshchenko, A.; Dradrach, A.; Adamczewska-Sowińska, K.; Oszczęda, Z. Application of nanowater and biopreparations in agriculture. Pr. Nauk. Politechnika Opolska. Ser. Stud. Monogr. 2014, 404, 265–271. (In Polish) [Google Scholar]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Effect of water treated with low-pressure, low-temperature glow plasma of low frequency on planted peppermint (Mentha piperita), EJPAU, Electron. J. Pol. Agric. Univ. Ser. Biotechnol. 2018, 21, 1. [Google Scholar]
- Upson, T.; Andrews, S. The Genus Lavandula; Royal Botanic Gardens, Kew; Timber Press: Portland, OR, USA, 2004; ISBN 9780881926422. [Google Scholar]
- Bailey, L.H. Manual of Cultivated Plants; MacMillan Publishing Company: New York, NY, USA, 1949. [Google Scholar]
- Lis-Balchin, M. Lavender: The Genus Lavandula; Taylor and Francis: London, UK, 2002; ISBN 9780203216521. [Google Scholar]
- Mabberley, D.J. Mabberley’s Plant-Book; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-11502-6. [Google Scholar]
- Royal Botanic Gardens, World Checklist of Selected Plant Families: Royal Botanic Gardens, Kew Sciences. 2020. Available online: https://wcsp.science.kew.org/prepareChecklist.do;jsessionid=7177C3D5E74073EA2B8DFF2EC93277EC.kppapp06-csp?checklist=selected_families%40%40233200820201002611kew.org (accessed on 20 August 2020).
- Csurches, S.; Edwards, R. National Weeds Program Potential Environmental Weeds in Australia, Candidate Species for Preventative Control; Queensland Department of Natural Resources: Mackay, Australia, 1998; ISBN 0-642-21409-3. [Google Scholar]
- Blankespoor, J. Lavender’s Medicinal and Aromatherapyuses and Lavender Truffles; Chestnut School of Herbal Medicine: Weaverville, NC, USA, 2012. [Google Scholar]
- Plant finder—Plectranthus Mona Lavender. Missouri Botanical Garden: St. Louis, MO, USA, 2020. Available online: www.missouribotanicalgarden.org (accessed on 21 August 2020).
- Lavender. Drugs.com. Available online: https://www.drugs.com/npp/lavender.html (accessed on 1 November 2018).
- Lavender. Drugs and Lactation Database (LactMed), National Library of Medicine, US National Institutes of Health, 3 December 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK501865/ (accessed on 20 August 2020).
- Umezu, T.; Nagano, K.; Ito, H.; Kosakai, K.; Sakaniwa, M.; Morita, M. Anticonflict effects of lavender oil and identification of its active constituents. Pharm. Biochem. Behavior 2006, 85, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M. Index of Garden Plants; Timber Press: Portland, OR, USA, 1994. [Google Scholar]
- Cavanagh, H.M.A.; Wilkinson, J. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Kasper, S.; Gastpar, M.; Müller, W.E.; Volz, H.P.; Möller, H.J.; Dienel, A.; Schläfke, S. Silexan, an orally administered Lavandula oil preparation, is effective in the treatment of ‘subsyndromal’ anxiety disorder: A randomized, double-blind, placebo controlled trial. Int. Clin. Psychopharm. 2010, 25, 277–287. [Google Scholar] [CrossRef]
- Perry, R.; Terry, R.; Watson, L.K.; Ernst, E. Is lavender an anxiolytic drug? A systematic review of randomised clinical trials. Phytomedicine 2012, 19, 825–835. [Google Scholar]
- Nordquist, J.; Wilson, D.R. What Are the Health Benefits and Risk of Lavender? Medical News Today, 2020. Available online: https://www.medicalnewstoday.com/articles/265922 (accessed on 21 August 2020).
- Expanded Commission E monograph: Lavender Flower. Integrative Medicine Communications, Germany; from the American Botanical Council. 2000. Available online: http://cms.herbalgram.org/commissione/index.html?gclid=Cj0KCQjw4f35BRDBARIsAPePBHwWR3JEzM7AR3COFj_cQ0BhZa0htXPXeUqJq1htvEeZw5eOZMjFlZQaAkEZEALw_wcB&ts=1598029641&signature=1cad5789340eb293a7b7775280d709b5 (accessed on 10 August 2020).
- Lis-Balchin, M.; Hart, S. Studies on the mode of action of the essentials oil of lavender (Lavandula angustifolia P. Miller). Phytother. Res. 1999, 13, 540–542. [Google Scholar] [CrossRef]
- Stanojevic, L.; Stanojevic, M.; Cakic, M.; Nikolic, V.; Nikolic, L. The effect of hydrodistillation techniques on field, kinetics, composition and antibacterial activity of Essentials oils from flowers of Lavandula officinalis L. Hem. Ind. 2011, 65, 455–463. [Google Scholar] [CrossRef]
- Koulivand, P.H.; Ghadiri, M.K.; Gorji, A. Lavender and the nervous system. Evid. Based Complement. Alternat. Med. 2013, 2013, 681304. [Google Scholar] [CrossRef] [Green Version]
- Fismer, K.L.; Pilkington, K. Lavender and sleep: A systematic review of the evidence. Eur. J. Integr. Med. 2012, 4, 436–447. [Google Scholar] [CrossRef]
- Kains, M.G. Culinary Herbs: Their Cultivation Harvesting Curing and Uses; Orange Judd Company: New York, NY, USA, 1912; Available online: https://www.amazon.com/Culinary-Herbs-Cultivation-Harvesting-Curing-ebook/dp/B004TRELJ6#reader_B018PJ9BNO (accessed on 13 August 2020).
- Bagget, N. The Art of Cooking with Lavender; Kitchenslane Productions: Columbia, MD, USA, 2016. [Google Scholar]
- Perry, D. How to Cook with Lavender Bon Appetite. 2015. Available online: https://www.bonappetit.com/test-kitchen/how-to/article/cooking-with-lavender (accessed on 15 August 2020).
- Kremenchuk, R.I.; Kitaev, O.I. Estimation of lavender (Lavandula angustifolia) frost resistance. J. Appl. Res. Plant Variety Stud. Protect. 2017, 13, 155–161. [Google Scholar]
- Zarnowski, R.; Suzuki, Y. Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J. Food Compos. Anal. 2004, 17, 649–664. [Google Scholar] [CrossRef]
- Polish Standards, PN-75/A-04018; Polish Committee for Standardization: Warsaw, Poland, 1975; Available online: https://www.pkn.pl/en (accessed on 10 March 2020).
- Oren, R.; Werk, K.S.; Buchmann, N.; Zimmermann, R. Chlorophyll–nutrient relationships identify nutritionally caused decline in Piceaabies stands. Can. J. Forest Res. 1993, 23, 1187–1195. [Google Scholar] [CrossRef]
- Kopec, R.E.; Cooperstone, J.L.; Cichon, M.J.; Schwartz, S.J. Analysis Methods of carotenoids. In Analysis of Antioxidant Rich Phytochemicals; Xu, Z., Luke, R., Howard, L.R., Eds.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Al Majidi, H.M.I.; Al Qubury, H.Y. Determination of vitamin C (ascorbic acid) contents in various fruit and vegetable by UV-spectrophotometry and titration methods. J. Chem. Pharm. Sci. 2016, 9, 2972–2974. [Google Scholar]
- Wesolowska, A.; Grzeszczuk, M.; Jadczak, D. Comparison of chemical compositions of essential oils isolated by hydrodistillation from wild thyme (Thymus serpyllum L.) with use of Deryng and Clevenger apparatus. Herba Polon. 2014, 60, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.J. Biochemistry and Molecular Biology of Plants, 2nd ed.; Wiley: Blackwell, MA, USA, 2000. [Google Scholar]
- Brown, S.A. Biosynthesis of the coumarins IV. The formation of coumarin and herniarin in lavender. Phytochemistry 1963, 2, 7–144. [Google Scholar] [CrossRef]
- Zámboriné Németh, E.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Revs. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Arun Kumar Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α- and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Mr. HempFlower, Ocimene: The Lesser Known Terpene with Amazing Benefits. Available online: https://mrhempflower.com/ocimene/ (accessed on 8 September 2020).
- Grys, A.; Łowicki, Z.; Gryszczyńska, A.; Kania, M.; Parus, A. Herbal plants in the treatment of skin diseases—Security and application. Borgis Post. Fitoter. 2011, 3, 191–196. (In Polish) [Google Scholar]
- Wilkerson, R.D.; Henderson, J.D. Antiarrhythmic activity of amitriptyline analogues in conscious dogs after myocardial infarction: Cyproheptadinium methiodide. J. Med.Chem. 1980, 23, 1255–1258. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Ohira, K.; Urushibara, K.; Ito, A.; Yoshida, M.; Kanai, M.; Tanatani, A.; Kagechika, H.; Hirano, T. Steric structure and activity relationship of cyproheptadine derivatives as inhibitors of histone methyltransferase Set7/9. Bioorg. Med. Chem. 2016, 24, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Bilikiewicz, A.; Pużyński, S.; Wciórka, J.; Rybakowski, J. Psychiatry; Urban & Parner: Wrocław, Poland, 2003; Volume 2, p. 526. ISBN 83-87944-72-6. (In Polish) [Google Scholar]
- Borg-Karlson, A.K.; Norin, T.; Talvitie, A. Configurations and conformations of torreyol (δ-cadinol), α-cadinol, T-murolol and T-cadinol. Tetrahedron. 1981, 37, 425–430. [Google Scholar] [CrossRef]
- Bartnik, M.; Facey, P.C.; Glycosides, P.C. Pharmacognosy; Badal, S., Delgoda, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 8. [Google Scholar]
- Sallaud, C.; Rontein, D.; Onillon, S.; Jabes, F.; Duffe, P.; Giacalone, C.; Thoraval, S.; Escoffier, C.; Herbette, G.; Leonhardt, N.; et al. A Novel pathway for sesquiterpene biosynthesis from Z,Z-fernesyl pyrophosphate in the wild tomato solanum habrochaites. Plant. Cell 2009, 21, 301–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapir-Mir, M.; Mett, A.; Belausov, E.; Tal-Mashulam, S.; Frydman, A.; Gidoni, D.; Eyal, Y. Peroxisomal localization of arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant. Physiol. 2008, 148, 1219–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Water | Yield [g] | Dry mass [g] | Ash [%] | Selected Ion Content [mg/g Dry Mas] | |||
---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | ||||
Control | 184 | 135 | 6.63 ± 0.02 | 0.233 ± 0.002 | 14.253 ± 0.007 | 3.192 ± 0.004 | 1.373 ± 0.002 |
LPGPA | 195 | 136 | 7.02 ± 0.04 | 0.265 ± 0.002 | 14.685 ± 0.005 | 3.256 ± 0.002 | 1.421 ± 0.001 |
LPGPN | 197 | 142 | 7.23 ± 0.03 | 0.267 ± 0.004 | 14.562 ± 0.003 | 3.251 ± 0.003 | 1.488 ± 0.003 |
LPGPC | 186 | 134 | 6.83 ± 0.02 | 0.262 ± 0.003 | 14.685 ± 0.005 | 3.249 ± 0.002 | 1.288 ± 0.003 |
LPGPM | 190 | 133 | 6.68 ± 0.03 | 0.261 ± 0.005 | 14.623 ± 0.002 | 3.255 ± 0.001 | 1.379 ± 0.003 |
LPGPO | 184 | 133 | 6.23 ± 0.03 | 0.268 ± 0.001 | 14.522 ± 0.004 | 3.258 ± 0.004 | 1.376 ± 0.003 |
Component Content [g/100g Dry Mass] | ||||||||
---|---|---|---|---|---|---|---|---|
Water | Chlorophyll | Carotenoids | Ascorbic Acid | Fat | Protein | Carbohydrate | ||
a | b | Total | ||||||
Control | 1.352 ± 0.023 | 0.235 ± 0.013 | 1.587 ± 0.018 | 0.315 ± 0.003 | 0.113 ± 0.005 | 0.63 ± 0.01 | 1.87 ± 0.01 | 97.50 ± 0.01 |
LPGPA | 1.421 ± 0.018 | 0.293 ± 0.014 | 1.714 ± 0.016 | 0.329 ± 0.004 | 0.118 ± 0.003 | 0.52 ± 0.02 | 1.92 ± 0.02 | 97.56 ± 0.02 |
LPGPN | 1.472 ± 0.021 | 0.308 ± 0.012 | 1.780 ± 0.016 | 0.337 ± 0.004 | 0.117 ± 0.004 | 0.53 ± 0.03 | 2.21 ± 0.01 | 97.26 ± 0.02 |
LPGPC | 1.363 ± 0.011 | 0.241 ± 0.013 | 1.604 ± 0.012 | 0.316 ± 0.003 | 0.123 ± 0.005 | 0.51 ± 0.01 | 1.63 ± 0.04 | 97.86 ± 0.02 |
LPGPM | 1.342 ± 0.018 | 0.218 ± 0.011 | 1.560 ± 0.015 | 0.318 ± 0.002 | 0.119 ± 0.002 | 0.62 ± 0.01 | 1.83 ± 0.02 | 97.55 ± 0.02 |
LPGPO | 1.292 ± 0.016 | 0.246 ± 0.009 | 1.538 ± 0.013 | 0.309 ± 0.004 | 0.109 ± 0.003 | 0.58 ± 0.02 | 1.78 ± 0.02 | 97.64. ± 0.02 |
Water Treated under | ||||||||
---|---|---|---|---|---|---|---|---|
Peak Position in Chromatogram | Retention Time [min] | Component a | Non-Treated | Air | N2 | CO2 | O2 | CH4 |
2. | 7.27 | α-Pinene | - | 0.04 | - | - | - | - |
3. | 7.68 | Camphene | 1.25 | 0.1 | 4.96 | 0.09 | - | 1.35 |
4. | 7.77 | Dihydrosabinene | - | - | - | - | 2.36 | - |
5. | 8.22 | Sabinene | 0.28 | 0.02 | 8.25 | - | 0.28 | 0.28 |
6. | 8.36 | 1-Octen-3-ol | - | 1.36 | - | - | 6.58 | - |
7. | 8.38 | (-)-β-Pinene | 0.59 | 0.73 | - | 6.21 | - | - |
8. | 8.49 | 3-Octanone | - | 0.36 | - | - | - | - |
9. | 8.60 | β-Pinene | 0.58 | 1.07 | - | 0.58 | 3.65 | 0.58 |
12. | 9.05 | α-Phellandrene | 0.28 | 0.53 | - | - | - | - |
13. | 9.13 | 3-Carene | 3.78 | 5.56 | 6.56 | 3.78 | - | 3.78 |
15. | 9.37 | p-Cymene | 0.48 | 0.4 | 0.01 | - | - | - |
16. | 9.51 | o-Cymene | 0.98 | 0.81 | - | - | - | 0.98 |
17. | 9.63 | D-Limonene | 2.12 | 2.79 | 8.92 | 1.11 | 3.12 | 2.12 |
18. | 9.70 | β-Phellandrene | 3.86 | 7.16 | - | 2.68 | 2.86 | - |
19. | 9.71 | Eucalyptol | 4.31 | 21.68 | - | 8.75 | 9.52 | 4.31 |
20. | 9.77 | trans-β-Ocimene | - | - | - | - | 1.62 | - |
21. | 10.04 | β-Ocimene | - | 4.2 | - | - | - | - |
22. | 10.37 | γ-Terpinene | - | 0.06 | - | - | - | - |
23. | 10.67 | cis-β-Terpineol | 0.31 | - | - | - | 0.31 | - |
25. | 11.09 | Terpinolene | 0.15 | 0.28 | - | - | 0.68 | 0.15 |
27. | 11.40 | Linalool | 0.63 | - | - | 3.68 | 0.41 | - |
30. | 12.11 | Neo-allo-ocimene | - | - | - | - | 0.36 | - |
31. | 12.24 | Artemiseol | - | 0.35 | - | - | 3.51 | - |
34. | 12.63 | Camphor | 6.42 | 0.84 | 3.68 | - | 0.23 | 28.52 |
36. | 12.99 | Lavandulol | 0.26 | 0.22 | - | 6.39 | 4.25 | 0.2 |
40. | 13.24 | endo-Borneol dup-1 | 8.00 | 10.27 | 4.28 | 8.06 | 1.65 | 12.68 |
43. | 13.41 | p-Cymen-8-ol | 0.35 | 0.28 | 0.3 | 0.42 | - | 0.45 |
45. | 13.58 | Cryptone | 1.79 | 1.88 | - | - | 1.79 | 1.79 |
46. | 13.80 | α-Terpineol | 0.98 | 0.4 | 0.27 | - | - | 0.22 |
49. | 13.99 | endo-Borneol | 0.13 | 0.11 | - | 0.13 | - | 0.13 |
52. | 14.12 | trans-Piperitol | - | 3.15 | - | - | 3.26 | - |
55. | 14.93 | Cuminal | 0.5 | 0.4 | 0.45 | - | - | 0.5 |
58. | 15.08 | Linalyl acetate | 0.3 | 1.41 | 0.29 | - | 0.16 | 0.16 |
62. | 15.81 | Carveol | 0.38 | 0.85 | 0.38 | - | 0.28 | 0.48 |
63. | 15.82 | Lavandulol acetate | - | - | - | - | 1.25 | - |
64. | 15.92 | Bornyl acetate | 0.18 | 0.35 | 0.18 | - | 0.18 | 0.18 |
67. | 16.07 | p-Cymen-7-ol | 0.23 | 0.24 | 0.23 | 2.98 | - | - |
69. | 16.46 | Berbenone | 0.68 | 0.61 | - | 8.56 | 0.7 | 0.62 |
77. | 17.96 | Geranyl acetate | - | 1.54 | - | - | - | - |
78. | 18.02 | β-Elemene | 6.54 | - | - | - | - | - |
81. | 18.91 | α-Santalene | 0.63 | 5.82 | 0.63 | 0.63 | 0.71 | 0.63 |
82. | 18.97 | Caryophyllene | 1.68 | 0.53 | 0.68 | - | 0.24 | 0.68 |
84. | 19.14 | α-Bergamotene dup-1 | 0.09 | 0.28 | - | 0.09 | 0.09 | 3.95 |
85. | 19.22 | Coumarin | 27.82 | 0.25 | 0.21 | 28.69 | 25.63 | - |
87. | 19.59 | Geranyl propionate | 0.36 | - | 11.65 | 0.15 | 0.21 | 0.14 |
88. | 19.83 | Germacrene D | 0.63 | - | 0.06 | 0.1 | 0.06 | 0.06 |
92. | 20.16 | γ-Cadinene | 2.22 | - | - | - | 2.16 | 9.25 |
93. | 20.20 | σ-Cadinene | - | 2.36 | 13.76 | - | - | - |
94. | 20.74 | 4-epi-Cubenol | - | - | 0.32 | - | - | - |
95. | 20.80 | Caryophyllene oxide | 0.99 | 0.33 | - | - | 0.99 | 0.99 |
97. | 21.21 | τ- Cadinol | 5.1 | 6.3 | 3.25 | 5.27 | 5.65 | 9.85 |
99. | 21.73 | Herniarin | 14.14 | 14.08 | 30.68 | 11.65 | 15.25 | 14.97 |
Total number of components | 38 | 41 | 23 | 21 | 33 | 29 | ||
Yield of essential oil (mL/100 g dry mass) | 0.2 | 0.4 | 0.4 | 0.3 | 0.3 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielska, K.; Ciesielski, W.; Girek, T.; Kołoczek, H.; Oszczęda, Z.; Tomasik, P. Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water 2020, 12, 3168. https://doi.org/10.3390/w12113168
Ciesielska K, Ciesielski W, Girek T, Kołoczek H, Oszczęda Z, Tomasik P. Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water. 2020; 12(11):3168. https://doi.org/10.3390/w12113168
Chicago/Turabian StyleCiesielska, Katarzyna, Wojciech Ciesielski, Tomasz Girek, Henryk Kołoczek, Zdzisław Oszczęda, and Piotr Tomasik. 2020. "Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency" Water 12, no. 11: 3168. https://doi.org/10.3390/w12113168
APA StyleCiesielska, K., Ciesielski, W., Girek, T., Kołoczek, H., Oszczęda, Z., & Tomasik, P. (2020). Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water, 12(11), 3168. https://doi.org/10.3390/w12113168