Dissolved Organic Matter in Continental Hydro-Geothermal Systems: Insights from Two Hot Springs of the East African Rift Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting and Sampling Sites
2.2. Sample Preparation
2.3. Inorganic Solutes and Gas Analysis
2.4. Quali-Quantitative Characterization of Dissolved Organic Matter
3. Results
3.1. Geochemical Context and DOC Concentration
3.2. SPE-DOM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deamer, D.W.; Georgiou, C.D. Hydrothermal Conditions and the Origin of Cellular Life. Astrobiology 2015, 15, 1091–1095. [Google Scholar] [CrossRef]
- Thrane, J.-E.; Hessen, D.O.; Andersen, T. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity. Ecosystems 2014, 17, 1040–1052. [Google Scholar] [CrossRef] [Green Version]
- Elkins, K.M.; Nelson, D.J. Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coord. Chem. Rev. 2002, 228, 205–225. [Google Scholar] [CrossRef]
- Dittmar, T.; Stubbins, A. Dissolved Organic Matter in Aquatic Systems. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–156. ISBN 9780080983004. [Google Scholar]
- Rossel, P.E.; Stubbins, A.; Rebling, T.; Koschinsky, A.; Hawkes, J.A.; Dittmar, T. Thermally altered marine dissolved organic matter in hydrothermal fluids. Org. Geochem. 2017, 110, 73–86. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Kim, J.-H.; Ryu, J.-S.; Jin, Y.K.; Lee, Y.K.; Hur, J. Exploring sediment porewater dissolved organic matter (DOM) in a mud volcano: Clues of a thermogenic DOM source from fluorescence spectroscopy. Mar. Chem. 2019, 211, 15–24. [Google Scholar] [CrossRef]
- Gomez-Saez, G.V.; Niggemann, J.; Dittmar, T.; Pohlabeln, A.M.; Lang, S.Q.; Noowong, A.; Pichler, T.; Wörmer, L.; Bühring, S.I. Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems. Geochim. Cosmochim. Acta 2016, 190, 35–52. [Google Scholar] [CrossRef]
- Hawkes, J.A.; Hansen, C.T.; Goldhammer, T.; Bach, W.; Dittmar, T. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. Geochim. Cosmochim. Acta 2016, 175, 68–85. [Google Scholar] [CrossRef]
- Gonsior, M.; Hertkorn, N.; Hinman, N.; Dvorski, S.E.M.; Harir, M.; Cooper, W.J.; Schmitt-Kopplin, P. Yellowstone Hot Springs are Organic Chemodiversity Hot Spots. Sci. Rep. 2018, 8, 14155. [Google Scholar] [CrossRef] [Green Version]
- Wheildon, J.; Morgan, P.; Williamson, K.H.; Evans, T.R.; Swanberg, C.A. Heat flow in the Kenya rift zone. Tectonophysics 1994, 236, 131–149. [Google Scholar] [CrossRef]
- McCall, J. Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites. Earth-Sci. Rev. 2010, 103, 71–79. [Google Scholar] [CrossRef]
- Fazi, S.; Butturini, A.; Tassi, F.; Amalfitano, S.; Venturi, S.; Vazquez, E.; Clokie, M.; Wanjala, S.W.; Pacini, N.; Harper, D.M. Biogeochemistry and biodiversity in a network of saline–alkaline lakes: Implications of ecohydrological connectivity in the Kenyan Rift Valley. Ecohydrol. Hydrobiol. 2018, 18, 96–106. [Google Scholar] [CrossRef]
- Olago, D.; Opere, A.; Barongo, J. Holocene palaeohydrology, groundwater and climate change in the lake basins of the Central Kenya Rift. Hydrol. Sci. J. 2009, 54, 765–780. [Google Scholar] [CrossRef]
- Olaka, L.A.; Wilke, F.D.H.; Olago, D.O.; Odada, E.O.; Mulch, A.; Musolff, A. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study. Sci. Total Environ. 2016, 545–546, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Washbourn-Kamau, C.K. Late Quaternary Shorelines of Lake Naivasha, Kenya. Azania Archaeol. Res. Africa 1975, 10, 77–92. [Google Scholar] [CrossRef]
- Omenda, P.A. The geology and structural controls of the Olkaria geothermal system, Kenya. Geothermics 1998, 27, 55–74. [Google Scholar] [CrossRef]
- Butturini, A.; Herzsprung, P.; Lechtenfeld, O.J.; Venturi, S.; Amalfitano, S.; Vazquez, E.; Pacini, N.; Harper, D.M.; Tassi, F.; Fazi, S. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley. Water Res. 2020, 173, 115532. [Google Scholar] [CrossRef]
- Tassi, F.; Fazi, S.; Rossetti, S.; Pratesi, P.; Ceccotti, M.; Cabassi, J.; Capecchiacci, F.; Venturi, S.; Vaselli, O. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS ONE 2018, 13, e0193914. [Google Scholar] [CrossRef] [Green Version]
- Montegrossi, G.; Tassi, F.; Vaselli, O.; Bidini, E.; Minissale, A. A new, rapid and reliable method for the determination of reduced sulphur (S2−) species in natural water discharges. Appl. Geochemistry 2006, 21, 849–857. [Google Scholar] [CrossRef]
- Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 2008, 6, 230–235. [Google Scholar] [CrossRef]
- Raeke, J.; Lechtenfeld, O.J.; Wagner, M.; Herzsprung, P.; Reemtsma, T. Selectivity of solid phase extraction of freshwater dissolved organic matter and its effect on ultrahigh resolution mass spectra. Environ. Sci. Process. Impacts 2016, 18, 918–927. [Google Scholar] [CrossRef]
- Lechtenfeld, O.J.; Kattner, G.; Flerus, R.; McCallister, S.L.; Schmitt-Kopplin, P.; Koch, B.P. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 2014, 126, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Herzsprung, P.; Hertkorn, N.; von Tümpling, W.; Harir, M.; Friese, K.; Schmitt-Kopplin, P. Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view. Anal. Bioanal. Chem. 2014, 406, 7977–7987. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.P.; Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926–932. [Google Scholar] [CrossRef] [Green Version]
- LaRowe, D.E.; Van Cappellen, P. Degradation of natural organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta 2011, 75, 2030–2042. [Google Scholar] [CrossRef]
- Stubbins, A.; Spencer, R.G.M.; Chen, H.; Hatcher, P.G.; Mopper, K.; Hernes, P.J.; Mwamba, V.L.; Mangangu, A.M.; Wabakanghanzi, J.N.; Six, J. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol. Oceanogr. 2010, 55, 1467–1477. [Google Scholar] [CrossRef]
- Schmitt-Kopplin, P.; Hemmler, D.; Moritz, F.; Gougeon, R.D.; Lucio, M.; Meringer, M.; Müller, C.; Harir, M.; Hertkorn, N. Systems chemical analytics: Introduction to the challenges of chemical complexity analysis. Faraday Discuss. 2019, 218, 9–28. [Google Scholar] [CrossRef]
- Ball, B.J.W.; Mccleskey, R.B.; Nordstrom, D.K.; Holloway, J.M.; Survey, U.S.G. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003–2005. U.S. Dep. Inter. U.S. Geol. Surv. 2006. [Google Scholar]
- Jirsa, F.; Gruber, M.; Stojanovic, A.; Omondi, S.O.; Mader, D.; Körner, W.; Schagerl, M. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught. Geochemistry 2013, 73, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Kellerman, A.M.; Guillemette, F.; Podgorski, D.C.; Aiken, G.R.; Butler, K.D.; Spencer, R.G.M. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environ. Sci. Technol. 2018, 52, 2538–2548. [Google Scholar] [CrossRef]
- Dadi, T.; Harir, M.; Hertkorn, N.; Koschorreck, M.; Schmitt-Kopplin, P.; Herzsprung, P. Redox Conditions Affect Dissolved Organic Carbon Quality in Stratified Freshwaters. Environ. Sci. Technol. 2017, 51, 13705–13713. [Google Scholar] [CrossRef]
- Lewis, W. Global primary production of lakes: 19th Baldi Memorial Lecture. Inl. Waters 2011, 1, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Oduor, S.O.; Schagerl, M. Phytoplankton primary productivity characteristics in response to photosynthetically active radiation in three Kenyan Rift Valley saline alkaline lakes. J. Plankton Res. 2007, 29, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Verschuren, D. Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 1999, 44, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.S.; Nielsen, C. Ostracodes as Indicators of Paleohydrochemistry in Lakes: A Late Quaternary Example from Lake Elmenteita, Kenya. Palaios 1986, 1, 601. [Google Scholar] [CrossRef]
- Chiodini, G.; Marini, L. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 1998, 62, 2673–2687. [Google Scholar] [CrossRef]
- Klevenz, V.; Sumoondur, A.; Ostertag-Henning, C.; Koschinsky, A. Concentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal vents. Geochem. J. 2010, 44, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Lechtenfeld, O.J.; Hertkorn, N.; Shen, Y.; Witt, M.; Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 2015, 6, 6711. [Google Scholar] [CrossRef] [Green Version]
Molecular Class | Compositional Constrains | Source |
---|---|---|
Carboxyl-rich alicyclic like molecules (CRAM-like) | 0.3 < DBE/C < 0.68 | [26] |
0.2 < DBE/H < 0.95 | ||
0.77 < DBE/O < 1.75 | ||
Aliphatic | DBE/C < 0.3 | [26] |
H/C > 1 | ||
Aromatic | 0.5 ≤ AImod ≤ 0.67 | [24] |
Condensed Aromatic (CA) | AImod > 0.67 | [24] |
Saturated molecules | H/C > 2 | [5] |
O/C < 0.9 | ||
N-rich aliphatic molecules | H/C > 1.5 | [5] |
O/C < 0.9 | ||
N ≥ 1 |
pH | CO2 µmol/L | CH4 µmol/L | S2− mg/L | SO₄2− mg/L | Ca2⁺ mg/L | Na+ mg/L | K+ mg/L | F− mg/L | Mn µg/L | Fe µg/L | Li µg/L | As µg/L | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ON | 8.4 | n.a. | n.a. | n.a. | 144 | 1.0 | 478 | 23 | n.a. | 70.2 | 1832 | 590 | 87 |
ELM | 9.2 | 75 | 548 | n.a. | 69 | 10.6 | 784 | 29 | 79.8 | 5.0 | 63 | 253 | 28 |
SO | 9.7 | 2.4 | 156 | 7.8 | 106 | 3.5 | 2496 | 327 | 130 | 5.3 | 30 | 161 | 45 |
Sample Combination | Total | CHO | CHNO | CHOS | CHNOS |
---|---|---|---|---|---|
ON | 879 | 245 | 318 | 223 | 96 |
ELM | 761 | 193 | 460 | 65 | 43 |
SO | 1027 | 347 | 373 | 148 | 159 |
ON ∩ ELM | 510 | 258 | 165 | 84 | 3 |
ON ∩ SO | 445 | 124 | 228 | 89 | 4 |
ELM ∩ SO | 279 | 99 | 169 | 8 | 3 |
ON ∩ ELM ∩ SO | 2058 | 1276 | 755 | 27 | 0 |
(a) | ||||||||
CRAM O-Poor (%) | CRAM O-Rich (%) | CRAM Tot (%) | Aliph. O-Poor (%) | Aliph. O-Rich (%) | Arom. O-Poor (%) | Arom. O-Rich (%) | ||
ON | 52.6 | 9.7 | 62.3 | 6.1 | 0.6 | 4.4 | 1.1 | |
ELM | 35.2 | 6.7 | 41.9 | 23.0 | 3.2 | 3.0 | 0.5 | |
SO | 40.4 | 18.8 | 59.2 | 9.6 | 2.2 | 2.4 | 1.6 | |
Exclusive ELM | 3.6 | 0.5 | 4.1 | 8.5 | 70.4 | 0 | 1.4 | |
Exclusive ON | 35.9 | 0.2 | 36.1 | 0.4 | 1.9 | 2.4 | 4.3 | |
(b) | ||||||||
CA (%) | N-rich Aliphatics (%) | Saturated Molecules (%) | CHO (%) | CHNO (%) | CHOS (%) | CHNOS (%) | ||
ON | 1.4 | 1.1 | 1.1 | 63.8 | 10.7 | 14.7 | 0.5 | |
ELM | 0.6 | 12.0 | 4.2 | 55.4 | 23.4 | 3.3 | 0.4 | |
SO | 0.9 | 2.7 | 0.1 | 75.9 | 18.4 | 2.4 | 1.1 | |
Exclusive ELM | 0.4 | 54.7 | 21.5 | 22.7 | 62.2 | 11.0 | 4.0 | |
Exclusive ON | 6.3 | 1.7 | 6.2 | 9.3 | 11.4 | 75.5 | 3.8 | |
(c) | ||||||||
NOCSw | AImodw | MassZw | DBEw | N/Cw | S/Cw | O/Cw | H/Cw | |
ON | −0.46 | 0.28 | 362.9 | 8.09 | 0.010 | 0.012 | 0.378 | 1.274 |
ELM | −0.60 | 0.20 | 368.7 | 6.82 | 0.022 | 0.003 | 0.376 | 1.425 |
SO | −0.32 | 0.22 | 356.5 | 7.11 | 0.016 | 0.003 | 0.465 | 1.303 |
Exclusive ELM | −0.93 | 0.06 | 375.0 | 4.20 | 0.051 | 0.010 | 0.330 | 1.770 |
Exclusive ON | −0.48 | 0.29 | 321.0 | 8.50 | 0.017 | 0.055 | 0.320 | 1.290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butturini, A.; Amalfitano, S.; Herzsprung, P.; Lechtenfeld, O.J.; Venturi, S.; Olaka, L.A.; Pacini, N.; Harper, D.M.; Tassi, F.; Fazi, S. Dissolved Organic Matter in Continental Hydro-Geothermal Systems: Insights from Two Hot Springs of the East African Rift Valley. Water 2020, 12, 3512. https://doi.org/10.3390/w12123512
Butturini A, Amalfitano S, Herzsprung P, Lechtenfeld OJ, Venturi S, Olaka LA, Pacini N, Harper DM, Tassi F, Fazi S. Dissolved Organic Matter in Continental Hydro-Geothermal Systems: Insights from Two Hot Springs of the East African Rift Valley. Water. 2020; 12(12):3512. https://doi.org/10.3390/w12123512
Chicago/Turabian StyleButturini, Andrea, Stefano Amalfitano, Peter Herzsprung, Oliver J. Lechtenfeld, Stefania Venturi, Lydia A. Olaka, Nic Pacini, David M. Harper, Franco Tassi, and Stefano Fazi. 2020. "Dissolved Organic Matter in Continental Hydro-Geothermal Systems: Insights from Two Hot Springs of the East African Rift Valley" Water 12, no. 12: 3512. https://doi.org/10.3390/w12123512
APA StyleButturini, A., Amalfitano, S., Herzsprung, P., Lechtenfeld, O. J., Venturi, S., Olaka, L. A., Pacini, N., Harper, D. M., Tassi, F., & Fazi, S. (2020). Dissolved Organic Matter in Continental Hydro-Geothermal Systems: Insights from Two Hot Springs of the East African Rift Valley. Water, 12(12), 3512. https://doi.org/10.3390/w12123512