Composition of Sedimentary Organic Matter across the Laptev Sea Shelf: Evidences from Rock-Eval Parameters and Molecular Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
3. Results and Discussion
3.1. Grain Size Distribution along the Studied Profile
3.2. Sedimentary OM Composition on the Bulk Level from RE Pyrolysis
3.3. Sedimantary OM Composition on the Molecular Level
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Vonk, J.E.; Sanchez-Garca, L.; Van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.E.; Sánchez-García, L.; Semiletov, I.; Dudarev, O.; Eglinton, T.; Andersson, A.; Gustafsson, O. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 2010, 7, 3153–3166. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Gustafsson, Ö. Permafrost-carbon complexities. Nat. Geosci. 2013, 6, 675–676. [Google Scholar] [CrossRef]
- Van Dongen, B.E.; Semiletov, I.; Weijers, J.W.H.; Gustafsson, Ö. Contrasting lipid biomarker composition of terrestial organic matter exported from across the Eurasian Arctic by the five great Russian Arctic rivers. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Semiletov, I.P. Aquatic sources and sinks of CO2 and CH4 in the polar regions. J. Atmos. Sci. 1999, 56, 286–306. [Google Scholar] [CrossRef]
- Semiletov, I. The failure of coastal frozen rock as an important factor in the biogeochemistry of the Arctic shelf water. Dokl. Earth Sci. 1999, 369, 1140–1143. [Google Scholar]
- Semiletov, I.P.; Shakhova, N.E.; Pipko, I.I.; Pugach, S.P.; Charkin, A.N.; Dudarev, O.V.; Kosmach, D.A.; Nishino, S. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea. Biogeosciences 2013, 10, 5977–5996. [Google Scholar] [CrossRef] [Green Version]
- Semiletov, I.; Pipko, I.; Gustafsson, Ö.; Anderson, L.G.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Bröder, L.; Tesi, T.; Salvadó, J.A.; Semiletov, I.P.; Dudarev, O.V.; Gustafsson, Ö. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior. Biogeosciences 2016, 13, 5003–5019. [Google Scholar] [CrossRef] [Green Version]
- Tesi, T.; Semiletov, I.; Hugelius, G.; Dudarev, O.; Kuhry, P.; Gustafsson, Ö. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes. Geochim. Cosmochim. Acta 2014. [Google Scholar] [CrossRef]
- Karlsson, E.S.; Charkin, A.; Dudarev, O.; Semiletov, I.; Vonk, J.E.; Sánchez-García, L.; Andersson, A. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea. Biogeosciences 2011, 8, 1865–1879. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, E.S.; Brüchert, V.; Tesi, T.; Charkin, A.; Dudarev, O.; Semiletov, I.; Gustafsson, O. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers. Mar. Chem. 2015. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Shakhova, N.E.; Sergienko, V.I.; Pipko, I.I.; Dudarev, O.V. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system. Environ. Res. Lett. 2012, 7, 015201. [Google Scholar] [CrossRef]
- Doğrul Selver, A.; Sparkes, R.B.; Bischoff, J.; Talbot, H.M.; Gustafsson, Ö.; Semiletov, I.P.; Dudarev, O.V.; Boult, S.; van Dongen, B.E. Distributions of bacterial and archaeal membrane lipids in surface sediments reflect differences in input and loss of terrestrial organic carbon along a cross-shelf Arctic transect. Org. Geochem. 2015. [Google Scholar] [CrossRef]
- Sparkes, R.B.; Selver, A.D.; Gustafsson, Ö.; Semiletov, I.P.; Haghipour, N.; Wacker, L.; Eglinton, T.I.; Talbot, H.M.; Van Dongen, B.E. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf. Cryosphere 2016. [Google Scholar] [CrossRef] [Green Version]
- Charkin, A.N.; Dudarev, O.V.; Semiletov, I.P.; Kruhmalev, A.V.; Vonk, J.E.; Sánchez-García, L.; Karlsson, E.; Gustafsson, O. Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: The primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea. Biogeosciences 2011. [Google Scholar] [CrossRef] [Green Version]
- Tesi, T.; Semiletov, I.; Dudarev, O.; Andersson, A.; Gustafsson, Ö. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas. J. Geophys. Res. Biogeosci. 2016. [Google Scholar] [CrossRef]
- Dudarev, O.V.; Semiletov, I.P.; Charkin, A.N.; Botsul, A.I. Deposition settings on the continental shelf of the east Siberian sea. Dokl. Earth Sci. 2006, 409, 1000–1005. [Google Scholar] [CrossRef]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev. l’Institut Fr. Pet. 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Köster, J.; Kotarba, M.; Lafargue, E.; Kosakowski, P. Source rock habitat and hydrocarbon potential of Oligocene Menilite Formation (Flysch Carpathians, Southeast Poland): An organic geochemical and isotope approach. Org. Geochem. 1998, 29, 543–558. [Google Scholar] [CrossRef]
- Demirel, I.H.; Kozlu, H. Evaluation of burial history, thermal maturity and source-rock assessment of the Upper Paleozoic succession of the eastern Taurus region, southern Turkey. Mar. Pet. Geol. 1997, 14, 867–877. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, V.; De, H.L. Technologie Rock-Eval 6: Performances et développements. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Peskova, D.N.; Sizykh, A.V.; Rukavishnikov, V.S. Evaluation the value-of-information (VOI) and look back analysis during modelling of the exploration works. In Proceedings of the 7th EAGE Saint Petersburg International Conference and Exhibition: Understanding the Harmony of the Earth’s Resources Through Integration of Geosciences, Saint Petersburg, Russia, 11–14 April 2016; pp. 494–498. [Google Scholar]
- Kharitontseva, P.A.; Rukavishnikov, V.S.; Geiger, S. DFN modelling and upscaling of the naturally fractured field. In Proceedings of the Geomodel 2017—19th Science and Applied Research Conference on Oil and Gas Geological Exploration and Development; European Association of Geoscientists and Engineers, Gelendzhik, Russia, 11–14 September 2017; Volume 2017, pp. 1–5. [Google Scholar]
- Sebag, D.; Disnar, J.R.; Guillet, B.; Di Giovanni, C.; Verrecchia, E.P.; Durand, A. Monitoring organic matter dynamics in soil profiles by “Rock-Eval pyrolysis”: Bulk characterization and quantification of degradation. Eur. J. Soil Sci. 2006, 57, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Hare, A.A.; Kuzyk, Z.Z.A.; Macdonald, R.W.; Sanei, H.; Barber, D.; Stern, G.A.; Wang, F. Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. Org. Geochem. 2014, 68, 52–60. [Google Scholar] [CrossRef]
- Disnar, J.R.; Trichet, J. The influence of various divalent cations (UO22+, Cu2+, Pb2+, Co2+, Ni2+, Zn2+, Mn2+) on the thermally induced evolution of organic matter isolated from an algal mat. Org. Geochem. 1984, 6, 865–874. [Google Scholar] [CrossRef]
- Baudin, F.; Stetten, E.; Schnyder, J.; Charlier, K.; Martinez, P.; Dennielou, B.; Droz, L. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan—A Rock-Eval survey. Deep. Res. Part II Top. Stud. Oceanogr. 2017, 142, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Marchand, C.; Lallier-Vergès, E.; Disnar, J.R.; Kéravis, D. Organic carbon sources and transformations in mangrove sediments: A Rock-Eval pyrolysis approach. Org. Geochem. 2008, 39, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Leonova, G.A.; Mal’tsev, A.E.; Melenevskii, V.N.; Miroshnichenko, L.V.; Kondrat’eva, L.M.; Bobrov, V.A. Geochemistry of Diagenesis of Organogenic Sediments: An Example of Small Lakes in Southern West Siberia and Western Baikal Area. Geochem. Int. 2018, 56, 344–361. [Google Scholar] [CrossRef]
- Melenevskii, V.N.; Leonova, G.A.; Bobrov, V.A.; Kashirtsev, V.A.; Krivonogov, S.K. Transformation of organic matter in the Holocene sediments of Lake Ochki (south Baikal region): Evidence from pyrolysis data. Geochem. Int. 2015, 53, 903–921. [Google Scholar] [CrossRef]
- Melenevskii, V.N.; Leonova, G.A.; Konyshev, A.S. The organic matter of the recent sediments of Lake Beloe, West Siberia (from data of pyrolytic studies). Russ. Geol. Geophys. 2011, 52, 583–592. [Google Scholar] [CrossRef]
- Fahl, K.; Stein, R. Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean). Geo-Marine Lett. 2007. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.; Fahl, K. The Laptev Sea: Distribution, Sources, Variability and Burial of Organic Carbon. In The Organic Carbon Cycle in the Arctic Ocean; Stein, R., Macdonald, R.W., Eds.; Springer: Berlin, Germany, 2004; pp. 213–237. [Google Scholar]
- Stein, R.; Fahl, K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): Sources, pathways, and sinks. Geo-Marine Lett. 2000, 20, 27–36. [Google Scholar] [CrossRef]
- Stein, R.; Fahl, K. The Kara Sea: Distribution, Sources, Variability and Burial of Organic Carbon. In The Organic Carbon Cycle in the Arctic Ocean; Stein, R., Macdonald, R.W., Eds.; Springer: Berlin, Germany, 2004; pp. 237–266. [Google Scholar]
- Stapel, J.G.; Schirrmeister, L.; Overduin, P.P.; Wetterich, S.; Strauss, J.; Horsfield, B.; Mangelsdorf, K. Microbial lipid signatures and substrate potential of organic matter in permafrost deposits: Implications for future greenhouse gas production. J. Geophys. Res. Biogeosci. 2016, 121, 2652–2666. [Google Scholar] [CrossRef] [Green Version]
- Stapel, J.G.; Schwamborn, G.; Schirrmeister, L.; Horsfield, B.; Mangelsdorf, K. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences 2018, 15, 1969–1985. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, M.; Grantz, A.; Kristoffersen, Y.; Macnab, R.; MacDonald, R.W.; Sakshaug, E.; Stein, R.; Jokat, W. The Arctic Ocean: Boundary Conditions and Background Information. In The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–32. [Google Scholar]
- Sakshaug, E. Primary and Secondary Production in the Arctic Seas. In The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004; pp. 57–81. [Google Scholar]
- Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, S.; Reimnitz, E.; Kassens, H.; Antonow, M. Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas. Int. J. Earth Sci. 2000, 89, 450–460. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Shakhova, N.E.; Dudarev, O.V.; Pugach, S.P.; Charkin, A.N.; McRoy, C.P.; Kosmach, D.; Gustafsson, Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 2011, 8, 2407–2426. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas. Estuaries Coasts 2012. [Google Scholar] [CrossRef]
- Dudarev, O.V. Modern Lithomorphogenesis on the East Arctic Shelf. Ph.D. Thesis, Pacific Oceanological Institute, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia. Tomsk Polytechnic University, Tomsk, Russia, 2016; p. 386. [Google Scholar]
- Wegner, C.; Hölemann, J.A.; Dmitrenko, I.; Kirillov, S.; Kassens, H. Seasonal variations in Arctic sediment dynamics—Evidence from 1-year records in the Laptev Sea (Siberian Arctic). Glob. Planet. Change 2005, 48, 126–140. [Google Scholar] [CrossRef]
- Eicken, H.; Reimnitz, E.; Alexandrov, V.; Martin, T.; Kassens, H.; Viehoff, T. Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont. Shelf Res. 1997. [Google Scholar] [CrossRef] [Green Version]
- Reimnitz, E.; Dethleff, D.; Nürnberg, D. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Mar. Geol. 1994, 119, 215–225. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Baudin, F.; Disnar, J.-R.; Aboussou, A.; Savignac, F. Guidelines for Rock-Eval analysis of recent marine sediments. Org. Geochem. 2015, 86, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Carrie, J.; Sanei, H.; Stern, G. Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org. Geochem. 2012, 46, 38–53. [Google Scholar] [CrossRef]
- Gershelis, E.V.; Kashapov, R.S.; Ruban, A.S.; Oberemok, I.A.; Leonov, A.A.; Chernykh, D.V.; Dudarev, O.V.; Semiletov, I.P. Identifying sources of organic carbon in surface sediments of laptev sea shelf using a rock-eval approach. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2020, 331, 189–198. [Google Scholar] [CrossRef]
- Dethleff, D.; Kuhlmann, G. Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source regions. Polar Res. 2010, 29, 265–282. [Google Scholar] [CrossRef]
- Panova, E.V.; Ruban, A.S.; Dudarev, O.V.; Tesi, T.; Broöder, L.; Gustafsson, O.; Grinko, A.A.; Shakhova, N.E.; Goncharov, I.V.; Mazurov, A.K.; et al. Lithological features of surface sediment and their influence on organic matter distribution across the east-Siberian Arctic shelf. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2017, 328, 94–105. [Google Scholar]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.K.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Jakobsson, M. Submarine glacial landform distribution in the central Arctic Ocean shelf-slope-basin system. Geol. Soc. Mem. 2016, 46, 469–476. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Nikiforov, S.L.; Ananiev, R.A.; Khortov, A.V.; Semiletov, I.P.; Jakobsson, M.; Dmitrievskiy, N.N. Recent geological–geomorphological processes on the east Arctic shelf: Results of the expedition of the icebreaker Oden in 2014. Oceanology 2015, 55, 926–929. [Google Scholar] [CrossRef]
- Barnes, P.W.; Asbury, J.L.; Rearic, D.M.; Ross, C.R. Ice erosion of a sea-floor knickpoint at the inner edge of the stamukhi zone, Beaufort Sea, Alaska. Mar. Geol. 1987, 76, 207–222. [Google Scholar] [CrossRef]
- Jakobsson, M.; Nilsson, J.; Anderson, L.; Backman, J.; Björk, G.; Cronin, T.M.; Kirchner, N.; Koshurnikov, A.; Mayer, L.; Noormets, R.; et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Ananyev, R.; Dmitrevskiy, N.; Jakobsson, M.; Lobkovsky, L.; Nikiforov, S.; Roslyakov, A.; Semiletov, I. Sea-ice ploughmarks in the eastern Laptev Sea, East Siberian Arctic shelf. Geol. Soc. Mem. 2016, 46, 301–302. [Google Scholar] [CrossRef]
- O’Regan, M.; Backman, J.; Barrientos, N.; Cronin, T.M.; Gemery, L.; Kirchner, N.; Mayer, L.A.; Nilsson, J.; Noormets, R.; Pearce, C.; et al. The De Long Trough: A newly discovered glacial trough on the East Siberian continental margin. Clim. Past 2017, 13, 1269–1284. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.; Macdonald, R.W. References. In The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004; pp. 323–363. [Google Scholar]
- Schirrmeister, L.; Dietze, E.; Matthes, H.; Grosse, G.; Strauss, J.; Laboor, S.; Ulrich, M.; Kienast, F.; Wetterich, S. The genesis of Yedoma Ice Complex permafrost-grain-size endmember modeling analysis from Siberia and Alaska. E&G Quat. Sci. J 2020, 69, 33–53. [Google Scholar] [CrossRef]
- Strauss, J.; Schirrmeister, L.; Wetterich, S.; Borchers, A.; Davydov, S.P. Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, M.N.; Razumov, S.O.; Kunitzky, V.V.; and Spektor, V.B. Dinamika beregov vostochnykh arkticheskikh morey Rossii: Osnovnye faktory, zakonomernosti i tendencii (Dynamics of the Russian East Arctic Sea coast: Major factors, regularities and tendencies). Kriosf. Zemli (Earth’s Cryosphere) 2006, 10, 74–94. [Google Scholar]
- Dethleff, D. Dense water formation in the Laptev Sea flaw lead. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.; Macdonald, R.W. Organic Carbon Budget: Arctic Ocean vs. Global Ocean. In The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004; pp. 315–322. [Google Scholar]
- Gustafsson, Ö.; Van Dongen, B.E.; Vonk, J.E.; Dudarev, O.V.; Semiletov, I.P. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers. Biogeosciences 2011, 8, 1737–1743. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montluçon, D.B.; Hedges, J.I. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim. Cosmochim. Acta 1997, 61, 1247–1260. [Google Scholar] [CrossRef]
- Mayer, L.M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 1994. [Google Scholar] [CrossRef]
- Mayer, L.M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 1994. [Google Scholar] [CrossRef]
- Disnar, J.R.; Guillet, B.; Keravis, D.; Di-Giovanni, C.; Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: Scope and limitations. Org. Geochem. 2003, 34, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Zimov, S.A.; Schuur, E.A.G.; Stuart Chapin, F. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef]
- Hedges, J.I.; Cowie, G.L.; Richey, J.E.; Quay, P.D.; Benner, R.; Strom, M.; Forsberg, B.R. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceanogr. 1994, 39, 743–761. [Google Scholar] [CrossRef]
- Bröder, L.; Tesi, T.; Andersson, A.; Semiletov, I.; Gustafsson, Ö. Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer. Nat. Commun. 2018. [Google Scholar] [CrossRef] [Green Version]
- Salvadó, J.A.; Tesi, T.; Sundbom, M.; Karlsson, E.; Krusä, M.; Semiletov, I.P.; Panova, E.; Gustafsson, Ö. Contrasting composition of terrigenous organic matter in the dissolved, particulate and sedimentary organic carbon pools on the outer East Siberian Arctic Shelf. Biogeosciences 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Hedges, J.I.; Blanchette, R.A.; Weliky, K.; Devol, A.H. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochim. Cosmochim. Acta 1988, 52, 2717–2726. [Google Scholar] [CrossRef]
- Hicks, R.E.; Owen, C.J.; Aas, P. Deposition, resuspension, and decomposition of particulate organic matter in the sediments of Lake Itasca, Minnesota, USA. Hydrobiologia 1994, 284, 79–91. [Google Scholar] [CrossRef]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef] [Green Version]
- Eglinton, G.; Hamilton, R.J. Leaf epicuticular waxes. Science 1967, 156, 1322–1335. [Google Scholar] [CrossRef]
- Vonk, J.E.; Van Dongen, B.E.; Gustafsson, Ö. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys. Res. Lett. 2010, 37, L11605. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Gustafsson; Holmes, R.M.; Vonk, J.E.; Van Dongen, B.E.; Semiletov, I.P.; Dudarev, O.V.; Yunker, M.B.; MacDonald, R.W.; Montluçon, D.B.; et al. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: Comparison of hydrolyzable components with plant wax lipids and lignin phenols. Biogeosciences 2015, 12, 4841–4860. [Google Scholar] [CrossRef] [Green Version]
- Bray, E.E.; Evans, E.D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Marzi, R.; Torkelson, B.E.; Olson, R.K. A revised carbon preference index. Org. Geochem. 1993, 20, 1303–1306. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Station | Sampling Horizon | Lat °N | Long °E | Depth, m | Grain Size Classes. % | Grain Size Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (>63 µm) | Sortable Silt (63–10 µm) | Fine Silt (10–2 µm) | Clay (<2 µm) | Md, µm a | Mz. µm a | Sk b | Kg c | σ d | |||||
6005 | 0–2 | 72.5 | 130.5 | 14.5 | 51.8 | 28.1 | 11.0 | 9.1 | 99.69 | 52.84 | −0.589 | 0.891 | 6.817 |
2–5 | 0.0 | 66.3 | 24.5 | 9.2 | 11.11 | 10.02 | −0.313 | 1.515 | 3.143 | ||||
6006 | 0–2 | 72.71 | 130.5 | 18.5 | 0.1 | 48.1 | 21.2 | 30.6 | 8.527 | 7.849 | −0.394 | 1.923 | 3.871 |
2–5 | 0.1 | 67.4 | 22.0 | 10.5 | 11.28 | 10.01 | −0.357 | 1.677 | 3.052 | ||||
6007 | 0–2 | 73.12 | 130.5 | 24.3 | 0.0 | 47.6 | 31.7 | 20.7 | 9.418 | 8.297 | −0.369 | 1.521 | 3.608 |
2–5 | 0.1 | 52.5 | 33.6 | 13.7 | 8.254 | 7.006 | −0.325 | 1.443 | 3.214 | ||||
6008 | 0–2 | 72.91 | 130.5 | 22 | 0.0 | 41.2 | 32.0 | 26.8 | 7.368 | 6.987 | −0.401 | 1.937 | 3.993 |
2–5 | 0.0 | 62.6 | 24.0 | 13.4 | 11.68 | 10.118 | −0.373 | 1.572 | 3.114 | ||||
6009 | 0–2 | 73.12 | 130.37 | 24 | 0.0 | 46.9 | 24.6 | 28.5 | 9.638 | 8.119 | −0.303 | 1.734 | 3.243 |
2–5 | 0.1 | 67.6 | 22.6 | 9.7 | 10.25 | 8.800 | −0.364 | 1.579 | 3.161 | ||||
6013 | 0–2 | 73.59 | 130.28 | 23.5 | 0.0 | 52.8 | 24.1 | 23.1 | 8.647 | 6.294 | −0.550 | 1.147 | 3.908 |
2–5 | 0.0 | 36.0 | 35.3 | 28.7 | 4.819 | 2.758 | −0.546 | 1.032 | 7.487 | ||||
6014 | 0–2 | 73.9 | 129.32 | 40 | 100 | 0.0 | 0.0 | 0.0 | 267.1 | 299.6 | 0.499 | 2.280 | 1.489 |
6015 | 0–2 | 74.38 | 129.25 | 64 | 100 | 0.0 | 0.0 | 0.0 | 210.8 | 213.6 | 0.253 | 1.391 | 1.395 |
6016 | 2–5 | 74.55 | 129.18 | 72 | 0.0 | 54.4 | 34.0 | 11.6 | 8.738 | 7.602 | −0.313 | 1.189 | 3.175 |
6027 | 0–2 | 76.9 | 127.8 | 65 | 0.0 | 54.9 | 29.1 | 16.0 | 8.794 | 6.876 | −0.393 | 1.268 | 3.443 |
2–5 | 0.0 | 55.5 | 30.9 | 13.6 | 9.084 | 7.590 | −0.352 | 1.184 | 3.416 | ||||
6045 | 0–2 | 76.77 | 125.83 | 72 | 1.2 | 54.9 | 31.8 | 12.1 | 9.175 | 8.222 | −0.231 | 1.288 | 3.564 |
2–5 | 0.0 | 44.7 | 39.8 | 15.5 | 6.826 | 5.871 | −0.329 | 1.229 | 3.110 | ||||
6053 | 0–2 | 76.73 | 128.45 | 65 | 0.4 | 55.1 | 28.5 | 16.0 | 8.952 | 6.998 | −0.384 | 1.263 | 3.509 |
2–5 | 0.0 | 40.9 | 36.1 | 23.0 | 5.678 | 3.469 | −0.530 | 1.621 | 6.099 | ||||
6056 | 0–2 | 76.67 | 125.47 | 62 | 0.2 | 41.6 | 29.4 | 28.8 | 5.650 | 2.865 | −0.430 | 0.706 | 6.818 |
2–5 | 0.0 | 37.3 | 31.4 | 31.3 | 4.75 | 2.494 | −0.516 | 0.858 | 7.486 | ||||
6058 | 0–2 | 76.4 | 126.42 | 52 | 7.7 | 48.2 | 31.8 | 12.3 | 9.198 | 9.491 | −0.079 | 1.251 | 4.322 |
2–5 | 0.0 | 40.4 | 41.1 | 18.5 | 5.693 | 4.650 | −0.356 | 1.236 | 3.412 | ||||
6065 | 0–2 | 77.1 | 126.43 | 251 | 2.4 | 60.8 | 21.3 | 15.5 | 12.33 | 9.514 | −0.397 | 1.371 | 4.906 |
2–5 | 3.2 | 43.9 | 41.1 | 11.8 | 7.312 | 6.769 | −0.131 | 1.397 | 3.312 | ||||
6068 | 0–2 | 77.25 | 120.37 | 185 | 0.0 | 58.8 | 26.0 | 15.2 | 9.540 | 7.782 | −0.350 | 1.340 | 3.595 |
2–5 | 11.1 | 20.5 | 28.5 | 39.9 | 3.441 | 2.014 | −0.226 | 0.815 | 12.08 | ||||
6490 | 0–5 | 73.1 | 130.37 | 21 | 15.7 | 56.3 | 14.6 | 13.4 | 14.42 | 14.57 | −0.161 | 1.280 | 4.768 |
5–10 | 0.9 | 43.9 | 40.6 | 14.6 | 6.853 | 6.305 | −0.166 | 1.392 | 3.455 | ||||
6491 | 0–5 | 73.11 | 130.38 | 24 | 13.9 | 54.0 | 18.4 | 13.7 | 12.10 | 12.76 | −0.110 | 1.352 | 4.840 |
6505 | 0–5 | 75.19 | 129.14 | 40 | 13.5 | 44.6 | 28.7 | 13.2 | 9.932 | 11.08 | −0.044 | 1.036 | 5.012 |
5–10 | 20.5 | 20.2 | 30.1 | 29.2 | 5.313 | 4.049 | −0.180 | 0.709 | 14.18 | ||||
6521 | 0–5 | 76.89 | 127.81 | 65 | 15.2 | 44.9 | 26.9 | 13.0 | 10.52 | 11.64 | −0.057 | 0.985 | 5.097 |
6527 | 0–5 | 77.3 | 120.66 | 375 | 10.3 | 38.5 | 31.4 | 19.8 | 6.52 | 5.96 | 0.273 | 1.230 | 4.093 |
Station | Sampling Horizon | Tpeak, °C a | S1 b, mgHC/TOC | S2 b, mgHC/TOC | S3 b, mgCO2/TOC | PC c, % | RC c, % | TOC c, % | HI d | OI d | MinC c, % |
---|---|---|---|---|---|---|---|---|---|---|---|
6005 | 0–2 | 461 | 0.37 | 1.78 | 3.02 | 0.28 | 1.14 | 1.42 | 125 | 213 | 0.2 |
2–5 | 461 | 0.38 | 1.52 | 2.74 | 0.26 | 1.13 | 1.39 | 109 | 197 | 0.23 | |
6006 | 0–2 | 462 | 0.65 | 2.92 | 5.74 | 0.5 | 2.21 | 2.71 | 108 | 212 | 0.4 |
2–5 | 463 | 0.8 | 3.35 | 4.8 | 0.52 | 2.04 | 2.56 | 131 | 188 | 0.31 | |
6007 | 0–2 | 462 | 0.73 | 2.74 | 5.32 | 0.64 | 2.01 | 2.65 | 103 | 201 | 0.4 |
2–5 | 463 | 0.84 | 2.9 | 4.77 | 0.49 | 1.96 | 2.45 | 118 | 195 | 0.34 | |
6008 | 0–2 | 462 | 0.71 | 2.61 | 4.82 | 0.48 | 1.79 | 2.27 | 115 | 212 | 0.3 |
2–5 | 464 | 0.65 | 2.4 | 4.47 | 0.41 | 1.75 | 2.16 | 111 | 207 | 0.36 | |
6009 | 0–2 | 461 | 0.53 | 1.98 | 3.84 | 0.35 | 1.58 | 1.93 | 103 | 199 | 0.3 |
2–5 | 462 | 0.53 | 2.06 | 3.88 | 0.35 | 1.54 | 1.89 | 109 | 205 | 0.33 | |
6013 | 0–2 | 464 | 0.28 | 1.12 | 1.92 | 0.21 | 0.74 | 0.95 | 118 | 202 | 0.2 |
2–5 | 460 | 0.26 | 0.82 | 1.83 | 0.15 | 0.62 | 0.77 | 106 | 238 | 0.15 | |
6014 | 0–2 | 492 | 0.32 | 0.31 | 0.07 | 0.06 | 0.02 | 0.08 | 388 | 88 | 0.07 |
6015 | 0–2 | 468 | 0.43 | 0.47 | 0.25 | 0.09 | 0.05 | 0.14 | 336 | 179 | 0.04 |
6016 | 0–2 | 459 | 0.39 | 1.52 | 3.38 | 0.37 | 1.01 | 1.38 | 110 | 245 | 0.2 |
2–5 | 457 | 0.37 | 1.2 | 2.26 | 0.22 | 0.97 | 1.19 | 101 | 190 | 0.23 | |
6027 | 0–2 | 386 | 0.17 | 1.01 | 1.98 | 0.17 | 0.47 | 0.64 | 158 | 309 | 0.2 |
2–5 | 375 | 0.31 | 1.12 | 1.27 | 0.17 | 0.43 | 0.6 | 187 | 212 | 0.13 | |
6045 | 0–2 | 380 | 0.33 | 1.22 | 1.86 | 0.2 | 0.59 | 0.79 | 154 | 235 | 0.2 |
2–5 | 372 | 0.27 | 0.49 | 2.03 | 0.13 | 0.56 | 0.69 | 71 | 294 | 0.5 | |
6053 | 0–2 | 390 | 0.34 | 1.52 | 3.32 | 0.28 | 0.98 | 1.26 | 121 | 263 | 0.2 |
2–5 | 384 | 0.48 | 1.5 | 2.26 | 0.26 | 0.95 | 1.21 | 124 | 187 | 0.18 | |
6056 | 0–2 | 380 | 0.19 | 1 | 1.75 | 0.16 | 0.54 | 0.7 | 143 | 250 | 0.2 |
2–5 | 372 | 0.16 | 0.86 | 1.48 | 0.14 | 0.5 | 0.64 | 134 | 231 | 0.14 | |
6058 | 0–2 | 369 | 0.11 | 0.87 | 1.3 | 0.13 | 0.35 | 0.48 | 181 | 271 | 0.1 |
2–5 | 383 | 0.26 | 1.01 | 1.49 | 0.16 | 0.58 | 0.74 | 136 | 201 | 0.14 | |
6065 | 0–2 | 380 | 0.11 | 0.67 | 1.18 | 0.11 | 0.29 | 0.4 | 168 | 295 | 0.1 |
2–5 | 374 | 0.16 | 0.75 | 1.07 | 0.12 | 0.39 | 0.51 | 147 | 210 | 0.12 | |
6068 | 0–2 | 401 | 0.19 | 0.92 | 2 | 0.16 | 0.53 | 0.69 | 133 | 290 | 0.2 |
2–5 | 401 | 0.19 | 0.92 | 2 | 0.16 | 0.53 | 0.69 | 133 | 290 | 0.15 | |
6490 | 0–5 | 462 | 0.63 | 2.92 | 5.74 | 0.5 | 2.21 | 2.71 | 108 | 212 | 0.38 |
5–10 | 458 | 1.36 | 3.49 | 4.38 | 0.57 | 1.83 | 2.4 | 145 | 183 | 0.31 | |
6491 | 0–5 | 462 | 0.75 | 2.8 | 4.79 | 0.47 | 2.05 | 2.52 | 111 | 190 | 0.29 |
6505 | 0–5 | 396 | 0.61 | 1.49 | 2.41 | 0.36 | 0.91 | 1.27 | 117 | 190 | 0.2 |
5–10 | 387 | 0.8 | 1.57 | 1.81 | 0.26 | 0.81 | 1.07 | 147 | 169 | 0.19 | |
6521 | 0–5 | 374 | 1.01 | 1.81 | 1.56 | 0.28 | 0.4 | 0.68 | 266 | 229 | 0.11 |
6527 | 0–5 | 379 | 0.46 | 1.42 | 2.48 | 0.25 | 0.76 | 1.01 | 141 | 246 | 0.17 |
Station | Sampling Horizon | HMW n-Alkanes a, μg/g dw sed | HMW n-Alkanes a, mg/g OC | HMW/LMW b n-Alk | HMW n-Alk CPI c | TAR d | OEP26–33 e | HMW n-Alk Acids a, μg/g dw sed | HMW n-Alk Acids a, mg/g OC | HMW n-Alk Acids/n-Alk a |
---|---|---|---|---|---|---|---|---|---|---|
6005 | 0–2 | 6.18 | 0.44 | 23.79 | 3.92 | 21.00 | 3.93 | 29.82 | 2.10 | 4.83 |
2–5 | 8.56 | 0.62 | 10.19 | 6.50 | 4.02 | 6.23 | 18.53 | 1.33 | 2.16 | |
6006 | 0–2 | 18.42 | 0.68 | 37.83 | 6.87 | 45.70 | 6.95 | 14.16 | 0.52 | 0.77 |
2–5 | 2.65 | 0.10 | 10.06 | 6.91 | 4.77 | 6.87 | 11.45 | 0.45 | 4.33 | |
6007 | 0–2 | 11.44 | 1.00 | 49.68 | 5.75 | 28.75 | 5.81 | 21.07 | 0.80 | 1.84 |
2–5 | 23.76 | 0.97 | 13.43 | 7.83 | 5.77 | 7.68 | 30.37 | 1.24 | 1.28 | |
6008 | 0–2 | 31.95 | 1.41 | 77.71 | 10.00 | 65.24 | 10.24 | 38.13 | 1.68 | 1.19 |
2–5 | 27.06 | 1.25 | 6.93 | 7.78 | 4.24 | 7.37 | 38.80 | 1.80 | 1.43 | |
6009 | 0–2 | 57.09 | 2.96 | 53.54 | 7.59 | 45.86 | 7.77 | 60.29 | 3.12 | 1.06 |
2–5 | 40.29 | 2.13 | 12.75 | 9.84 | 5.74 | 9.57 | 15.28 | 0.81 | 0.38 | |
6013 | 0–2 | 6.15 | 0.65 | 42.26 | 5.97 | 41.31 | 5.87 | 5.54 | 0.58 | 0.90 |
2–5 | 31.89 | 4.14 | 4.64 | 5.59 | 1.81 | 5.35 | 20.28 | 2.63 | 0.64 | |
6016 | 0–2 | 4.59 | 0.33 | 25.47 | 1.56 | 8.81 | 1.12 | 11.91 | 0.86 | 2.59 |
2–5 | 18.16 | 1.53 | 3.54 | 4.71 | 1.34 | 4.32 | 48.91 | 4.11 | 2.69 | |
6027 | 0–2 | 2.36 | 0.37 | 14.34 | 3.60 | 10.65 | 3.59 | 2.70 | 0.42 | 1.14 |
2–5 | 6.72 | 1.12 | 2.68 | 3.26 | 0.94 | 3.04 | 10.61 | 1.77 | 1.58 | |
6045 | 0–2 | 2.16 | 0.27 | 22.99 | 2.57 | 12.30 | 2.73 | 4.19 | 0.53 | 1.94 |
2–5 | 6.93 | 1.00 | 4.67 | 3.80 | 2.04 | 3.57 | 7.77 | 1.13 | 1.12 | |
6053 | 0–2 | 2.18 | 0.17 | 21.95 | 3.60 | 15.02 | 3.37 | 2.16 | 0.17 | 0.99 |
2–5 | 17.39 | 1.44 | 24.05 | 4.69 | 13.06 | 4.31 | 14.31 | 1.18 | 0.82 | |
6056 | 0–2 | 2.22 | 0.32 | 25.45 | 4.16 | 17.02 | 4.10 | 1.93 | 0.28 | 0.87 |
2–5 | 2.97 | 0.46 | 11.99 | 3.00 | 6.21 | 2.70 | 2.39 | 0.37 | 0.81 | |
6058 | 0–2 | 1.00 | 0.21 | 4.17 | 2.03 | 1.92 | 2.11 | 0.90 | 0.19 | 0.90 |
2–5 | 2.64 | 0.36 | 4.91 | 4.16 | 2.51 | 3.73 | 2.46 | 0.33 | 0.93 | |
6065 | 0–2 | 1.16 | 0.29 | 7.69 | 2.31 | 5.69 | 3.17 | 0.31 | 0.08 | 0.27 |
2–5 | 3.92 | 0.77 | 3.15 | 4.23 | 1.36 | 4.15 | 2.92 | 0.57 | 0.75 | |
6068 | 0–2 | 2.58 | 0.37 | 3.50 | 2.18 | 2.42 | 2.02 | 5.23 | 0.76 | 2.03 |
2–5 | 1.04 | 0.15 | 5.63 | 6.65 | 3.75 | 6.88 | 6.13 | 0.89 | 5.88 | |
6490 | 0–5 | 4.91 | 0.18 | 46.86 | 4.57 | 21.80 | 4.32 | 9.48 | 0.40 | 1.93 |
5–10 | 13.18 | 0.55 | 58.15 | 8.36 | 45.14 | 8.40 | 21.26 | 0.78 | 1.61 | |
6505 | 0–5 | 1.72 | 0.14 | 21.34 | 3.02 | 11.06 | 2.71 | 3.13 | 0.25 | 1.83 |
5–10 | 1.70 | 0.16 | 52.14 | 5.82 | 36.28 | 5.76 | 1.72 | 0.16 | 1.01 | |
6527 | 0–5 | 1.18 | 0.12 | 16.27 | 5.13 | 9.30 | 4.93 | 1.34 | 0.13 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gershelis, E.; Grinko, A.; Oberemok, I.; Klevantseva, E.; Poltavskaya, N.; Ruban, A.; Chernykh, D.; Leonov, A.; Guseva, N.; Semiletov, I. Composition of Sedimentary Organic Matter across the Laptev Sea Shelf: Evidences from Rock-Eval Parameters and Molecular Indicators. Water 2020, 12, 3511. https://doi.org/10.3390/w12123511
Gershelis E, Grinko A, Oberemok I, Klevantseva E, Poltavskaya N, Ruban A, Chernykh D, Leonov A, Guseva N, Semiletov I. Composition of Sedimentary Organic Matter across the Laptev Sea Shelf: Evidences from Rock-Eval Parameters and Molecular Indicators. Water. 2020; 12(12):3511. https://doi.org/10.3390/w12123511
Chicago/Turabian StyleGershelis, Elena, Andrey Grinko, Irina Oberemok, Elizaveta Klevantseva, Natalina Poltavskaya, Alexey Ruban, Denis Chernykh, Andrey Leonov, Natalia Guseva, and Igor Semiletov. 2020. "Composition of Sedimentary Organic Matter across the Laptev Sea Shelf: Evidences from Rock-Eval Parameters and Molecular Indicators" Water 12, no. 12: 3511. https://doi.org/10.3390/w12123511