Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical Properties
3.2. Plant Gas Exchange Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nations, Coping with Water Scarcity. 2007. Available online: http://www.fao.org/nr/water/docs/escarcity.pdf (accessed on 26 February 2013).
- Kenny, J.F.; Barber, N.L.; Hutson, S.S.; Linsey, K.S.; Lovelace, J.K.; Maupin, M.A. Estimated use of water in the United States in 2005. U.S. Geological Survey, Reston, VA. Circular 2009, 1344, 52. [Google Scholar]
- Beeson, R.C. Modeling actual evapotranspiration of Viburnum odoratissimum during production from rooted cuttings to market size plants in 11.4-L containers. Hortic. Sci. 2010, 45, 1260–1264. [Google Scholar] [CrossRef] [Green Version]
- Bethke, J.A.; Cloyd, R.A. Pesticide use in ornamental production: What are the benefits? Pest Manag. Sci. 2009, 65, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.C.; Albano, J.P. Impact of fertigation versus controlled-release fertilizer formulations on nitrate concentrations in nursery drainage water. Hortic. Technol. 2011, 21, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, A.; Fernandez, T. Sustainable nursery irrigation management series: Part, I. Water use in nursery production. Univ. Tenn. Bul. 2013, W287. [Google Scholar]
- Caron, J.; Elrick, D.E.; Beeson, R.; Boudreau, J. Defining critical capillary rise properties for growing media in nurseries. Soil Sci. Soc. Am. J. 2005, 69, 794–806. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr.; Arnold, M.A.; Bilderback, T.E.; Bolusky, B.; Chandler, S.; Gramling, H.M.; Lea-Cox, J.D.; Harris, J.R.; Klinger, P.J.; Mathers, H.M.; et al. Strategic vision of container nursery irrigation in the next ten years. J. Environ. Hortic. 2004, 22, 113–115. [Google Scholar]
- Majsztrik, J.C.; Fernandez, R.T.; Fisher, P.R.; Hitchcock, D.R.; Lea-Cox, J.; Owen, J.S.; Oki, L.R.; White, S.A. Water use and treatment in container-grown specialty crop production: A review. Water Air Soil Pollut. 2017, 228, 151. [Google Scholar] [CrossRef] [Green Version]
- State of Michigan. Public Act 148, 2003. Available online: http://www.legislature.mi.gov/documents/2003-2004/publicact/htm/2003-PA-0148.htm (accessed on 22 January 2020).
- Fulcher, A.; LeBude, A.V.; Owen, J.S.; White, S.A.; Beeson, R.C. The next ten years: Strategic vision of water resources for nursery producers. Hortic. Technol. 2016, 26, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Fields, J.S.; Owen, J.S.; Scoggins, H.L. The influence of substrate hydraulic conductivity on plant water status of an ornamental container crop grown in suboptimal substrate water potentials. Hortic. Sci. 2017, 52, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, T.C.; Owen, J.S.; Niemiera, A.X. Water movement through a pine-bark substrate during irrigation. Hortic. Sci. 2014, 49, 1432–1436. [Google Scholar] [CrossRef] [Green Version]
- Altland, J.E.; Owen, J.S.; Jackson, B.E.; Fields, J.S. Physical and hydraulic properties of commercial pine-bark substrate products used in production of containerized crops. Hortic. Sci. 2018, 53, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Basiri Jahromi, N.; Walker, F.; Fulcher, A.; Altland, J.; Wright, W.C. Growth response, mineral nutrition, and water utilization of container-grown woody ornamentals grown in biochar-amended pine bark. Hortic. Sci. 2018, 53, 347–353. [Google Scholar]
- Basiri Jahromi, N. Improving Water Use Efficiency of Containerized Crops Using Biochar and Precision Irrigation Scheduling. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2019. [Google Scholar]
- Basiri Jahromi, N.; Walker, F.; Fulcher, A.; Altland, J. Photosynthesis, growth, and water use of Hydrangea paniculata ‘Silver Dollar’ produced with different irrigation schedules and biochar substrate amendment. Hortic. Sci. 2017, 52, S273–S274. [Google Scholar]
- Basiri Jahromi, N.; Walker, F.; Fulcher, A. What is biochar and how different biochars can improve your crops. UT Ext. 2019, W829. [Google Scholar]
- Arenas, M.; Vavrina, C.S.; Cornell, J.A.; Hanlon, E.A.; Hochmuth, G.J. Coir as an alternative to peat in media for tomato transplant production. Hortic. Sci. 2002, 37, 309–312. [Google Scholar] [CrossRef]
- Michel, J.C. The physical properties of peat: A key factor for modern growing media. Mires Peat 2010, 6, 1–6. [Google Scholar]
- Blok, C.; Wever, G. Experience with selected physical methods to characterize the suitability of growing media for plant growth. Acta Hortic. 2008, 779, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Hagen, E.; Fulcher, A.; Sun, X. Determining sensor orientation and depth within an 11.4 L container to estimate whole container volumetric water content. Appl. Eng. Agric. 2015, 31, 597–603. [Google Scholar]
- Hagen, E.; Nambuthiri, S.; Fulcher, A.; Geneve, R. Comparing substrate moisture-based daily water use and on-demand irrigation regimes for oakleaf hydrangea grown in two container sizes. Hortic. Sci. 2014, 179, 132–139. [Google Scholar] [CrossRef]
- Fulcher, A.; Buxton, J.W.; Geneve, R.L. Developing a physiological-based, on-demand irrigation system for container production. Hortic. Sci. 2012, 138, 221–226. [Google Scholar] [CrossRef]
- Nambuthiri, S.; Hagen, E.; Fulcher, A.; Geneve, R. Evaluating a physiological-based, on-demand irrigation system for container-grown woody plants with different water requirements. Hortic. Sci. 2017, 52, 251–257. [Google Scholar] [CrossRef]
- Basiri Jahromi, N.; Fulcher, A.; Walker, F.; Altland, J.; Wright, W.; Eash, N. Evaluating on-demand irrigation systems for container-grown woody plants grown in biochar-amended pine bark. Hortic. Sci. 2018, 53, 1891–1896. [Google Scholar]
- O’Meara, L.; Chappell, M.R.; van Iersel, M.W. Water use of Hydrangea macrophylla and Gardenia jasminoides in response to a gradually drying substrate. Hortic. Sci. 2014, 49, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Montesano, F.F.; van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Fonteno, W.C.; Harden, C.T. North Carolina state university horticultural substrates lab manual. N. C. State Univ. Raleigh NC 2010, 49, 827–832. [Google Scholar]
- Fulcher, A.; Fessler, L.; Piestch, G.; Wright, W. Improving plant available water during container production through leaching fraction-based irrigation scheduling and coir substrate amendment. Unpublished work. 2020. [Google Scholar]
- Bilderback, T.; Boyer, C.; Chappell, M.; Fain, G.; Fare, D.; Gilliam, C.; Jackson, B.E.; Lea-Cox, J.; LeBude, A.V.; Niemiera, A.; et al. Best Management Practices: Guide for Producing Nursery Crops, 3rd ed.; Southern Nursery Association: Acworth, GA, USA, 2013. [Google Scholar]
- Arguedas-Rodriguez, F.R. Calibrating Capacitance Sensors to Estimate Water Content, Matric Potential, and Electrical Conductivity in Soilless Substrates. Master’s Thesis, University of Maryland, Baltimore, MD, USA, 2009; p. 118. [Google Scholar]
- de Boodt, M.; Verdonck, O. The physical properties of substrates in horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Fields, J.S.; Owen, J.S.; Altland, J.E.; van Iersel, M.W.; Jackson, B.E. Soilless substrate hydrology can be engineered to influence plant water status for an ornamental containerized crop grown within optimal water potentials. J. Amer. Soc. Hortic. Sci. 2018, 143, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, A.; Geneve, R.L. Relationship between photosynthesis and substrate moisture for container-grown Hibiscus and Cornus. Acta Hortic. 2011, 922, 183–186. [Google Scholar] [CrossRef]
- Fernández, J.E. Plant-based methods for irrigation scheduling of woody crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Belayneh, B.E.; Lea-Cox, J.D.; Lichtenberg, E. Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery. Hortic. Technol. 2013, 23, 760–769. [Google Scholar] [CrossRef] [Green Version]
- San Diego County Water Authority. Water Authority’s Proposed 2019 Rate Increases Smallest in Years. Available online: https://www.sdcwa.org/water-authoritys-proposed-2019-rate-increases-smallest-years. (accessed on 20 January 2018).
- Advanced Energy Economy. Bringing California’s Water-Energy System Into the 21st Century Addressing Greenhouse Gas Emissions Through Technology. Available online: https://info.aee.net/bringing-californias-water-energy-system-into-the-21st-century (accessed on 20 January 2020).
- Lichtenberg, E.; Majsztrik, J.; Saavoss, M. Profitability of sensor-based irrigation in greenhouse and nursery crops. Hortic. Technol. 2013, 23, 770–774. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.; Dove, S.K.; van Iersal, M.W.; Thomas, P.A.; Ruter, J. Implementation of wireless sensor networks for irrigation control in three container nurseries. HortTechnology 2013, 23, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Warsaw, A.L.; Fernandez, R.T.; Cregg, B.M.; Andresen, J.A. Water conservation, growth, and water use efficiency of container–grown woody ornamentals irrigated based on daily water use. Hortic. Sci. 2009, 44, 1308–1318. [Google Scholar] [CrossRef]
- Daniels, A.B.; Barnard, D.M.; Chapman, P.L.; Bauerle, W.L. Optimizing substrate moisture measurements in containerized nurseries. Hortic. Sci. 2012, 47, 98–104. [Google Scholar] [CrossRef] [Green Version]
Coir Rate (%) | Total Porosity (%) | Air Space (%) | Container Capacity (%) | Bulk Density (g/cm3) |
---|---|---|---|---|
0 | 69 ± 3 | 30 ± 0 a y | 39 ± 0.03 c | 0.18 ± 0 a |
10 | 79 ± 2 | 35 ± 0.01 a | 44 ± 0.01 bc | 0.18 ± 0 a |
25 | 77 ± 3 | 29 ± 0.04 a | 48 ± 0.02 b | 0.16 ± 0 b |
40 | 77 ± 3 | 29 ± 0.02 a | 48 ± 0.02 b | 0.14 ± 0.01 c |
65 | 81 ± 3 | 21 ± 0.03 b | 59 ± 0.02 a | 0.11 ± 0 d |
P-value | 0.0600 | 0.0300 | 0.0006 | <0.0001 |
Photosynthetic Rate = a/(1 + exp (−(VWC − x0)/b)) | ||||
Treatment | a | x0 | b | r2 |
0% coir | 18.59 | 0.23 | 0.09 | 0.57 |
10% coir | 17.85 | 0.23 | 0.03 | 0.68 |
25% coir | 17.64 | 0.15 | 0.05 | 0.60 |
40% coir | 17.00 | 0.16 | 0.06 | 0.60 |
65% coir | 17.56 | 0.13 | 0.06 | 0.64 |
Transpiration Rate = a/(1 + exp (−(VWC − x0)/b)) | ||||
Treatment | a | x0 | b | r2 |
0% coir | 3.25 | 0.21 | 0.04 | 0.47 |
10% coir | 4.27 | 0.22 | 0.03 | 0.68 |
25% coir | 4.12 | 0.19 | 0.04 | 0.65 |
40% coir | 3.94 | 0.20 | 0.04 | 0.46 |
65% coir | 4.14 | 0.21 | 0.06 | 0.63 |
Stomatal Conductance = a/(1 + exp (−(VWC − x0)/b)) | ||||
Treatment | a | x0 | b | r2 |
0% coir | 0.21 | 0.22 | 0.02 | 0.51 |
10% coir | 0.28 | 0.22 | 0.00 | 0.42 |
25% coir | 0.29 | 0.19 | 0.02 | 0.54 |
40% coir | 0.26 | 0.22 | 0.01 | 0.45 |
65% coir | 0.30 | 0.50 | 0.02 | 0.55 |
Weight = y0 + a × VWC | ||||
Treatment | y0 | a | r2 | |
0% coir | 1.60 | 3.40 | 0.75 | |
10% coir | 0.96 | 5.55 | 0.76 | |
25% coir | 1.26 | 3.94 | 0.90 | |
40% coir | 1.13 | 3.81 | 0.89 | |
65% coir | 0.95 | 3.45 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiri Jahromi, N.; Fulcher, A.; Walker, F.; Altland, J. Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates. Water 2020, 12, 362. https://doi.org/10.3390/w12020362
Basiri Jahromi N, Fulcher A, Walker F, Altland J. Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates. Water. 2020; 12(2):362. https://doi.org/10.3390/w12020362
Chicago/Turabian StyleBasiri Jahromi, Nastaran, Amy Fulcher, Forbes Walker, and James Altland. 2020. "Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates" Water 12, no. 2: 362. https://doi.org/10.3390/w12020362
APA StyleBasiri Jahromi, N., Fulcher, A., Walker, F., & Altland, J. (2020). Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates. Water, 12(2), 362. https://doi.org/10.3390/w12020362