Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Modeling Tools
2.1.1. SWATmf Implementation
2.1.2. Reservoir Model
2.2. SWATmf Calibration
2.3. Climate Projections
2.4. Integrated Climate and Land Use Scenarios.
2.5. Interpretation of Results
3. Results and Discussion
3.1. Model Calibration
3.2. Evaluation of Scenarios
3.2.1. Impacts on Streamflow
Baseline
Interscenario Analysis
3.2.2. Impacts on Groundwater Levels
Baseline
Interscenario Analysis
3.2.3. Impacts on Reservoir Storage
Baseline
Interscenario Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5237. [Google Scholar] [CrossRef] [PubMed]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolino, J.R.; Cunningham, W.L. Ground–Water Depletion Across the Nation; US Geological Survey: Reston, VA, USA, 2003.
- Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.; Molden, D.; Sakthivadivel, R.; Seckler, D. The Global Groundwater Situation: Overview of Opportunities and Challenges. Econ. Politic. Wkly. 2001, 36, 4142–4150. [Google Scholar]
- Nelson, R.L. Assessing local planning to control groundwater depletion: California as a microcosm of global issues. Water Resour. Res. 2012, 48, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water a Single Resource; USGS Publications: Reston, VA, USA, 1998; pp. 1–79. [Google Scholar]
- Sophocleous, M.; Perkins, S.P. Methodology and application of combined watershed and ground–water models in Kansas. J. Hydrol. 2000, 236, 185–201. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Two–way coupling of unsaturated–saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of west China. J. Arid Land 2011, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW—Coupled Ground–Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005); US Geological Survey: Reston, VA, USA, 2008.
- Guzman, J.A.; Moriasi, D.N.; Gowda, P.H.; Steiner, J.L.; Starks, P.J.; Arnold, J.G.; Srinivasan, R. A model integration framework for linking SWAT and MODFLOW. Environ. Model. Softw. 2015, 73, 103–116. [Google Scholar] [CrossRef]
- Kollet, S.J.; Maxwell, R.M. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour. 2006, 29, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, R.M.; Miller, N.L. On the development of a coupled land surface and groundwater model. Dev. Water Sci. 2004, 55, 1503–1510. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process. In U.S. Geological Survey Techniques and Methods 6; US Geological Survey: Reston, VA, USA, 2005; p. 253. [Google Scholar]
- Moriasi, D.N.; Starks, P.J.; Guzman, J.A.; Garbrecht, J.D.; Steiner, J.L.; Stoner, J.C.; Allen, P.B.; Naney, J.W. Upper Washita River Experimental Watersheds: Reservoir, Groundwater, and Stream Flow Data. J. Environ. Qual. 2014, 43, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Homer, C.; Dewitz, J.; Yang, L.; Jim, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States—Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Oklahoma Conservation Commission. Fort Cobb Watershed Implementation Project; Oklahoma Conservation Commission: Oklahoma, OK, USA, 2009. [Google Scholar]
- Oklahoma Water Resources Board. West Central Watershed Planning Region Report; Oklahoma Water Resources Board: Oklahoma, OK, USA, 2012. [Google Scholar]
- Oklahoma Water Resources Board. Hydrologic Investigation Report of the Rush Springs Aquifer in West–Central Oklahoma, 2015; Oklahoma Water Resources Board: Oklahoma, OK, USA, 2018. [Google Scholar]
- McGuire, V.L.; Johnson, M.R.; Schieffer, R.L.; Stanton, J.S.; Sebree, S.K.; Verstraeten, I.M. Water in Storage and Approaches to Ground Water Management, High Plains Aquifer, 2000; United States Geological Survey: Reston, VA, USA, 2003.
- McGuire, V.L. Water-Level and Recoverable Water in Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013-15; United States Geological Survey: Reston, VA, USA, 2017.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.F.; Runkle, D.L. Hydrogeology, Water Quality, and Geochemistry of the Rush Springs Aquifer, Western Oklahoma; United States Geological Survey: Oklahoma, OK, USA, 1998.
- Penderson, L.R. Steady-State Simulation of Ground–Water Flow in the Rush Spring Aquifer, Cobb Creek Basin, Caddo County, Oklahoma. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1999. [Google Scholar]
- Soil Survey Staff; Natural Resources Conservation Service; United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Oklahoma; United States Department of Agriculture: Washington, DC, USA, 1995.
- Oklahoma Water Resources Board. Reported Groundwater Well Locations of Oklahoma. Available online: http://www.owrb.ok.gov/maps/PMG/owrbdata_GW.html (accessed on 17 May 2017).
- U.S. Government. Flood Control Regulations; Office of the Federal Register, National Archives and Records Administration: College Park, MD, USA, 2013.
- Ferrari, R.L. Fort Cobb Reservoir 1993 Sedimentary Survey; United States Bureau of Reclamation: Denver, CO, USA, 1994. [Google Scholar]
- Bureau of Reclamation. Technical Evaluation Report Fort Cobb Reservoir Supply/Demand Study; Bureau of Reclamation: Austin, TX, USA, 2012. [Google Scholar]
- Acero Triana, J.S.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Beyond model metrics: The perils of calibrating hydrologic models. J. Hydrol. 2019, 578, 124032. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparisson with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- United States Army Corps of Engineers. Monthly Charts for Fort Cobb Lake. Available online: http://www.swt–wc.usace.army.mil/FCOBcharts.html (accessed on 7 March 2018).
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Bureau of Reclamation; California Energy Commission; Climate Analytics Group; Climate Central; Lawrence Livermore National Laboratory; NASA Ames Research Center; Santa Clara University; Scripps Institute of Oceanography; U.S. Army Corps of Engineers; U.S. Geological Survey; et al. Downscaled CMIP3 and CMIP5 Climate Projections—Addendum—Release of Downscaled CMIP5 Climate Projections (LOCA) and Comparison with Preceding Information; US Department of the Interior, Bureau of Reclamation, Technical Service Center: Denver, CO, USA, 2016; pp. 1–29.
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5–A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Frankson, R.; Kunkel, K.; Stevens, L.; Champion, S.; Stewart, B. Oklahoma State Climate Summary. NOAA Technical Report NESDIS 149–OK; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2017. [Google Scholar]
- Garbrecht, J.D.; Zhang, X.C.; Steiner, J.L. Climate change and observed climate trends in the Fort Cobb experimental watershed. J. Environ. Qual. 2014, 43, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, S.; Leemans, R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Wu, C.F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu–Tu watershed in Northern Taiwan. Landsc. Urban Plan. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Gutiérrez-Jurado, K.Y.; Fernald, A.G.; Guldan, S.J.; Ochoa, C.G. Surface water and groundwater interactions in traditionally irrigated fields in Northern New Mexico, U.S.A. Water 2017, 9, 102. [Google Scholar] [CrossRef]
- Garbrecht, J.D.; Schneider, J.M. Case study of multiyear precipitation variations and the hydrology of Fort Cobb reservoir. J. Hydrol. Eng. 2008, 13, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Ketchum, Q.J. Development of Digital Models and Simulation of Groundwater Flow of the Rush Springs Aquifer in West Central Oklahoma. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2015. [Google Scholar]
- Mashburn, S.L.; Smith, S.J. Evaluation of Groundwater and Surface–Water Interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County; US Geological Survey: Reston, VA, USA, 2014.
- Ellis, J.H. Simulation of Groundwater Flow and Analysis of Projected Water Use for the Rush Springs Aquifer, Western Oklahoma; US Geological Survey: Reston, VA, USA, 2018.
- Steward, D.R.; Allen, A.J. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agric. Water Manag. 2016, 170, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Willis, T.M.; Black, A.S.; Meyer, W.S. Estimates of deep percolation beneath cotton in the Macquarie Valley. Irrig. Sci. 1997, 17, 141–150. [Google Scholar] [CrossRef]
- Oklahoma Water Resources Board. Water for 2060; Oklahoma Water Resources Board: Oklahoma, OK, USA, 2015. [Google Scholar]
Season | Period | Cobb Creek | Lake Creek | Willow Creek |
---|---|---|---|---|
Annual | 2043–2067 | 4% | 4% | (44%) |
2068–2092 | (−10%) | 0% | (52%) | |
Winter | 2043–2067 | 4% | (6%) | (50%) |
2068–2092 | (−18%) | 1% | (59%) | |
Spring | 2043–2067 | −1% | −4% | (38%) |
2068–2092 | −7% | −3% | (46%) | |
Summer | 2043–2067 | 1% | 4% | (45%) |
2068–2092 | (−12%) | −6% | (52%) | |
Fall | 2043–2067 | 10% | 11% | (45%) |
2068–2092 | −3% | 9% | (54%) |
Creek | Annual | Winter | Spring | Summer | Fall | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scenario | 2043–2067 | 2068–2092 | 2043–2067 | 2068–2092 | 2043–2067 | 2068–2092 | 2043–2067 | 2068–2092 | 2043–2067 | 2068–2092 | |
Cobb | Sc1 | (15%) | (18%) | (18%) | (25%) | (12%) | (15%) | (15%) | (17%) | (15%) | (17%) |
Sc2 | –5% | –6% | –5% | –7% | –5% | –7% | –4% | –5% | –5% | –5% | |
Sc3 | (–7%) | (–9%) | (–8%) | (–10%) | (–8%) | (–10%) | –6% | –7% | –7% | –8% | |
Lake | Sc1 | (7%) | (9%) | (7%) | (9%) | 7% | 9% | 8% | 9% | 7% | 7% |
Sc2 | –3% | –3% | –2% | –4% | –3% | –4% | –2% | –2% | –2% | –3% | |
Sc3 | –4% | –5% | –3% | –6% | –5% | –6% | –3% | –4% | –4% | –5% | |
Willow | Sc1 | (11%) | (23%) | (10%) | (24%) | (10%) | (22%) | (11%) | (24%) | (11%) | (23%) |
Sc2 | (–3%) | (–8%) | (–3%) | (–8%) | –3% | (–8%) | –3% | (–8%) | –3% | (–8%) | |
Sc3 | (–5%) | (–12%) | (–5%) | (–12%) | (–5%) | (–12%) | (–4%) | (–11%) | (–5%) | (–11%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acero Triana, J.S.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections. Water 2020, 12, 400. https://doi.org/10.3390/w12020400
Acero Triana JS, Chu ML, Guzman JA, Moriasi DN, Steiner JL. Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections. Water. 2020; 12(2):400. https://doi.org/10.3390/w12020400
Chicago/Turabian StyleAcero Triana, Juan S., Maria L. Chu, Jorge A. Guzman, Daniel N. Moriasi, and Jean L. Steiner. 2020. "Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections" Water 12, no. 2: 400. https://doi.org/10.3390/w12020400
APA StyleAcero Triana, J. S., Chu, M. L., Guzman, J. A., Moriasi, D. N., & Steiner, J. L. (2020). Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections. Water, 12(2), 400. https://doi.org/10.3390/w12020400