Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels
Abstract
:1. Introduction
2. Field Sites and Data Acquisition
2.1. Pfaffensprung
2.2. Runcahez
3. Methods
3.1. Hydraulics
3.2. Bedload Transport and Particle Motion
3.3. Hydroabrasion
3.4. Model Calibration
4. Results
4.1. Pfaffensprung
4.2. Runcahez
4.3. Abrasion Model Calibration
5. Discussion
5.1. Abrasion Pattern
5.2. Abrasion Model Calibration
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boes, R.M.; Hagmann, M. Sedimentation countermeasures—Examples from Switzerland. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, ETH Zurich, Switzerland, 27–29 April 2015; Boes, R., Ed.; pp. 193–210. [Google Scholar]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. JHR 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Annandale, G. Quenching the Thirst—Sustainable Water Supply and Climate Change; CreateSpace Independent Publication Platform: Charleston, SC, USA, 2013. [Google Scholar]
- White, R. Evacuation of Sediments from Reservoirs; Thomas Telfors Limited: London, UK, 2001. [Google Scholar]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. HSJ 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Wisser, D.; Frolkin, S.; Hagen, S.; Bierkens, M.F. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour. Res. 2013, 49, 5732–5739. [Google Scholar] [CrossRef] [Green Version]
- Annandale, G. Sustainable water supply, climate change and reservoir sedimentation management: Technical and economic viability. In Proceedings of the Riverflow 2014, Lausanne, Switzerland, 3–5 September 2014; Schleiss, A., De Cesare, G., Franca, M.J., Pfister, M., Eds.; pp. 3–10. [Google Scholar]
- Boes, R.M.; Auel, C.; Hagmann, M.; Albayrak, I. Sediment bypass tunnels to mitigate reservoir sedimentation and restore sediment continuity. In Proceedings of the Riverflow 2014, Lausanne, Switzerland, 3–5 September 2014; Schleiss, A.J., De Cesare, G., Franca, M.J., Pfister, M., Eds.; pp. 221–228. [Google Scholar]
- Boes, R.M.; Müller-Hagmann, M.; Albayrak, I. Design, operation and morphological effects of bypass tunnels as a sediment routing technique. In Proceedings of the 3rd Intnernational Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, 9–12 April 2019; Chang, T.-J., Ed.; pp. 40–50. [Google Scholar]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Kantoush, S.A.; Sumi, T. River Morphology and Sediment Management Strategies for Sustainable Reservoir in Japan and European Alps; Annuals of Disaster Prevention Research Institute 53B, Kyoto University: Kyoto, Japan, 2010. [Google Scholar]
- Auel, C.; Boes, R.M. Sediment bypass tunnel design—Review and outlook. In Proceedings of the ICOLD Symposium “Dams under changing challenges”, 79th Annual Meeting, Lucerne, Switzerland, 1 June 2011; pp. 403–412. [Google Scholar]
- Sumi, T.; Kantoush, S.A. Comprehensive sediment management strategies in Japan: Sediment bypass tunnels. In Proceedings of the 34th IHAR World Congress, Brisbane, Australia, 26 June–1 July 2011; pp. 1803–1810. [Google Scholar]
- Hagmann, M.; Albayrak, I.; Boes, R.M.; Auel, C.; Sumi, T. Reviewing research and experience on sediment bypass tunnels. Int. J. Hydropower Dams 2016, 23, 54–58. [Google Scholar]
- Boes, R.M.; Müller-Hagmann, M.; Albrayrak, I.; Müller, B.; Caspescha, L.; Flepp, A.; Jacobs, F.; Auel, C. Sediment bypass tunnels: Swiss experiences with bypass efficiency and abrasion-resistant invert materials. In Proceedings of the 86th ICOLD Annual Meeting, Vienna, Austria, 1–7 July 2019; pp. 625–638. [Google Scholar]
- Auel, C.; Kobayashi, S.; Takemon, Y.; Sumi, T. Effects of sediment bypass tunnels on grain size distribution and benthic habitats in regulated rivers. JRBM 2017, 15, 433–444. [Google Scholar] [CrossRef]
- Vischer, D.; Hager, W.H.; Casanova, C.; Joos, B.; Lier, P.; Martini, O. Bypass tunnels to prevent reservoir sedimentation. In Proceedings of the 19th ICOLD Congress, Florence, Italy, 26–30 May 1997; pp. 605–624. [Google Scholar]
- Jacobs, F.; Winkeler, W.; Hinkeler, F.; Volkart, P. Betonabrasion im Wasserbau (‘Concrete Abrasion at Hydraulic Structures’); VAW-Mitteilung 168; Minor, H.-E., Ed.; ETH Zurich: Zurich, Switzerland, 2001. [Google Scholar]
- Beer, A.R.; Turowski, J.M. Bedload transport controls bedrock erosion under sediment-starved conditions. Earth Surf. Dyn. 2015, 3, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; Hancock, G.S.; Anderson, R.S. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. GSA Bull. 2000, 112, 490–503. [Google Scholar] [CrossRef]
- Sklar, L.S.; Dietrich, W.E. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Chatanantavet, P.; Parker, G. Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion. JGR Earth Surf. 2009, 114. [Google Scholar] [CrossRef]
- Auel, C. Flow Characteristics, Particle Motion and Invert Abrasion in Sediment Bypass Tunnels. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2014. [Google Scholar] [CrossRef]
- Lague, D. The stream power river incision model: Evidence, theory and beyond. ESPL 2014, 39, 38–61. [Google Scholar] [CrossRef]
- Beer, A.; Turowski, J.M.; Kirchner, J.W. Spatial patterns of erosion in a bedrock gorge. JGR Earth Surf. 2017, 122, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Auel, C.; Boes, R.M.; Sumi, T. Abrasion prediction at Asahi sediment bypass tunnel based on Ishibashi’s formula. JAWER 2018, 6, 125–138. [Google Scholar] [CrossRef]
- Auel, C.; Thene, J.R.; Carroll, J.; Holmes, C.; Boes, R.M. Rehabilitation of the Mud Mountain bypass tunnel invert. In Proceedings of the 26th ICOLD Congress, Vienna, Austria, 1–7 July 2018. [Google Scholar]
- Howard, A.D.; Kerby, G. Channel changes in badlands. Geol. Soc. Am. Bull. 1983, 94, 739–752. [Google Scholar] [CrossRef]
- Seidl, M.A.; Dietrich, W.E.; Kirchner, J.W. Longitudinal profile development into bedrock: An analysis of Hawaiian channels. J. Geol. 1994, 102, 457–474. [Google Scholar] [CrossRef] [Green Version]
- Attal, M.; Cowie, P.; Whittaker, A.; Hobley, D.; Tucker, G.; Roberts, G.P. Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy. JGR Earth Surf. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Sklar, L.S.; Dietrich, W.E. The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation–abrasion incision model. Geomorphology 2006, 82, 58–83. [Google Scholar] [CrossRef]
- Johnson, J.P.L.; Whipple, K.X. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate. JGR Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Lamb, M.P.; Dietrich, W.E.; Sklar, L.S. A model for fluvial bedrock incision by impacting suspended and bed load sediment. JGR Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Turowski, J.M.; Böckli, M.; Rickenmann, D.; Beer, A.R. Field measurements of the energy delivered to the channel bed by moving bed load and links to bedrock erosion. JGR Earth Surf. 2013, 118, 2438–2450. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.P. A surface roughness model for predicting alluvial cover and bed load transport rate in bedrock channels. JGR Earth Surf. 2014, 119, 2147–2173. [Google Scholar] [CrossRef]
- Scheingross, J.S.; Brun, F.; Lo, D.Y.; Omerdin, K.; Lamb, M.P. Experimental evidence for fluvial bedrock incision by suspended and bedload sediment. Geology 2014, 42, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Sklar, L.S.; Dietrich, W.E. Correction to “A mechanistic model for river incision into bedrock by saltating bed load”. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. JGR Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Sklar, L.S.; Dietrich, W.E. Sediment and rock strength controls on river incision into bedrock. Geology 2001, 29, 1087–1090. [Google Scholar] [CrossRef]
- Beyeler, J.D.; Sklar, L.S. Bedrock resistance to fluvial erosion: The importance of rock tensile strength, crystal grain size and porosity in scaling from the laboratory to the field. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 13–17 December 2010. Abstract EP41D-0740. [Google Scholar]
- Momber, A.W. Effects of target material properties on solid particle erosion of geomaterials at different impingement velocities. Wear 2014, 319, 69–83. [Google Scholar] [CrossRef]
- Lamb, M.P.; Finnegan, N.J.; Scheingross, J.S.; Sklar, L.S. New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. Geomorphology 2015, 244, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Small, E.E.; Blom, T.; Hancock, G.S.; Hynek, B.M.; Wobus, C.W. Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments. JGR Earth Surf. 2015, 120, 1455–1469. [Google Scholar] [CrossRef] [Green Version]
- Auel, C.; Albayrak, I.; Sumi, T.; Boes, R.M. Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction. ESPL 2017, 42, 1384–1396. [Google Scholar] [CrossRef]
- Auel, C.; Albayrak, I.; Sumi, T.; Boes, R.M. Sediment transport in high-speed flows over a fixed bed: 1. Particle dynamics. ESPL 2017, 42, 1365–1383. [Google Scholar] [CrossRef]
- Auel, C. Sediment bypassing—A sustainable and eco-friendly strategy against reservoir sedimentation. In Proceedings of the 26th ICOLD Congress, Vienna, Austria, 1–7 July 2018. [Google Scholar]
- Inoue, T.; Izumi, N.; Shimizu, Y.; Parker, G. Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial-bedrock channel. JGR Earth Surf. 2014, 119, 2123–2146. [Google Scholar] [CrossRef]
- Müller-Hagmann, M. Hydroabrasion in High-Speed Sediment-Laden Flows in Sediment Bypass Tunnels. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2017. [Google Scholar] [CrossRef]
- Müller-Hagmann, M.; Albayrak, I.; Boes, R.M. Field calibration of abrasion prediction models for concrete and granite invert linings. In Proceedings of the 2nd International Workshop on Sediment Bypass Tunnels, Kyoto, Japan, 8–12 May 2017. [Google Scholar]
- Müller, B.; Walker, M. The Pfaffensprung sediment bypass tunnel: 95 years of experience. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, VAW, Zurich, Switzerland, 27–29 April 2015; pp. 247–258. [Google Scholar]
- Arioglu, N.; Girini, Z.C.; Arigolue, E. Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Mater. J. 2006, 103, 18–24. [Google Scholar]
- Studer, H. Das Kraftwerk Amsteg der Schweizerischen Bundesbahnen (‘Power plant Amsteg of the Swiss Federal Railways’). Sonderdruck der Schweizerischen Bauzeitung 1925–1926, 86–87, 1–29. [Google Scholar]
- SBZ. Rekonstruktion des Umleittunnels am Pfaffensprung des Kraftwerks Amsteg der SBB (‘Reconstruction of the bypass tunnel Pfaffensprung of the power plant Amsteg of the SBB’). Schweiz. Bauzeitg. 1943, 121, 41–42. (In German) [Google Scholar]
- SIA. Betonbau (‘Concrete Structures’); Schweizerischer Ingenieur und Architektenverein: Zurich, Switzerland, 2003; Volume 262. (In German) [Google Scholar]
- Bamforth, P.; Chisholm, D.; Gibbs, J.; Harrison, T. Properties of Concrete for Use in Eurocode 2; The Concrete Center Report CCIP-029; CCIP: Camberley, UK, 2008. [Google Scholar]
- Noguchi, T.; Tomosawa, F.; Nemati, K.M.; Chiaia, B.M.; Fantilli, A.P. A practical equation for elastic modulus of concrete. ACI Structur. J. 2009, 106, 690–696. [Google Scholar]
- Axpo. Fragebogen Sedimentumleitstollen Runcahez (‘Questionnaire about Runcahez Sediment bypass Tunnel’); Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich: Zurich, Switzerland, 2011; unpublished. (In German) [Google Scholar]
- Strickler, A. Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen (‘Contirbution to the Velocity Equation and the Roughness Number of Streams, Channels and PIPES’); Eidgenössisches Amt für Wasserwirtschaft: Bern, Switzerland, 1923; Volume 16. (In German) [Google Scholar]
- Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. ICE 1939, 12, 133–156. [Google Scholar] [CrossRef]
- Wallisch, S. Hydraulische Methoden zur Erfassung von Rauheiten-Äquivalente Sandrauheiten und Strickler-Beiwerte fester und beweglicher Strömungsberandungen (‘Hydraulic methods to capture equivalent sandroughness heights and Strickler values of fixed and movable beds’); DVWK: Hennef, Germany, 1990; Volume 92. [Google Scholar]
- Shields, A. Anwendung der Ähnlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebebewegung (‘Application of Similarity Principles and Turbulence Research to Bed-Load Movement’); Mitteilungen der Preussische Versuchsanstalt für Wasserbau und Schiffbau 26, Berlin; California Institute of Technology: Pasadena, CA, USA, 1936; pp. 524–526. (In German) [Google Scholar]
- Chatanantavet, P.; Whipple, K.X.; Adams, M.A.; Lamb, M.P. Experimental study on coarse grain saltation dynamics in bedrock channels. JGR Earth Surf. 2013, 118, 1161–1176. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Peter, E.; Müller, R. Formulas for bedload transport. In Proceedings of the 2nd Meeting of International Association of Science, Engineering and Technology, Series A, Stockholm, Sweden, 6–9 June 1948; pp. 39–64. [Google Scholar]
- Günter, A. Die Kritische Mittlere Sohlenschubspannung bei Geschiebemischungen unter Berücksichtigung der Deckschichtbildung und der Turbulenzbedingten Sohlenschubspannungsschwankungen (‘Critical Mean Bed Shear Stress of Grain Size Mixtures in Respect of Armor Layer Building und Turbulence Induced Fluctuations of Bed Shear Stresses’); VAW-Mitteilungen 3; Vischer, D., Ed.; VAW, ETH Zurich: Zurich, Switzerland, 1971. (In German) [Google Scholar]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; United States Department of Agriculture: Washington, DC, USA, 1950.
- Parker, G. Hydraulic geometry of active gravel rivers. ASCE J. Hydraul. Div. 1979, 105, 1185–1201. [Google Scholar]
- Smart, G.M.; Jäggi, M.N.R. Sedimenttransport in Steilen Gerinnen (‘Sediment transport in steep channels’); VAW-Mitteilung 64; Vischer, D., Ed.; VAW, ETH Zürich: Zurich, Switzerland, 1983. (In German) [Google Scholar]
- Cheng, N. Exponential formula for bedload transport. JHE 2002, 128, 942–946. [Google Scholar] [CrossRef]
- Gilbert, G.K. The Transportation of Debris by Running Water; USGS Professional Paper; U.S. Geological Survey: Washington, DC, USA, 1914.
- Wilson, K.C. Bed-load transport at high shear stress. ASCE J. Hydraul. Div. 1966, 92, 49–59. [Google Scholar]
- Smart, G.M. Sediment transport formula for steep channels. JHE 1984, 110, 267–276. [Google Scholar] [CrossRef]
- Rickenmann, D. Geschiebetransport bei steilen Gefällen (‘Bedload transport in steep slopes’). In Proceedings of the 75 Jahre VAW, ETH Zurich, Zurich, Switzerland, 7 October 2005; Minor, H.-E., Ed.; pp. 107–119. (In German). [Google Scholar]
- Cheng, N.; Chen, X. Slope correction for calculation of bedload sediment transport rates in steep channels. JHE 2014, 140, 04014018. [Google Scholar] [CrossRef]
- VAW. Flussmorphologie des Mittellaufes zwischen Göschenen und Amsteg (‘River Morphology of the Middle Reaches between Göschenen and Amsteg’); Report No. 4014/3967; VAW, ETH Zurich: Zurich, Switzerland, 1992; unpublished. (In German) [Google Scholar]
- Bezzola, G.; Hunzinger, R.; Jäggi, M. Flussmorphologie und Geschiebehaushalt während des Ereignisses vom 24./25. August 1987 im Reusstal (‘River Morphology and Bed Load Transport during the Flood Event of August 24 and 25 1987 in the Reuss Valley’); Bundesamt für Wasserwirtschaft Mitteilung Nr. 4, Mitteilung Nr. 14 der Landeshydrologie und –geologie; Bern, Switzerland, 1991; (In German). Available online: https://www.bafu.admin.ch/dam/bafu/de/dokumente/naturgefahren/uw-umwelt-wissen/ursachenanalyse_derhochwasser1987.pdf.download.pdf/ursachenanalyse_derhochwasser1987.pdf (accessed on 23 November 2015).
- Bezzola, G.R. The effect of sediment transport during the 1987-flood in the Reuss River. In Proceedings of the Grain Sorting Seminar, Ascona, Switzerland, 21–26 October 1991; pp. 331–343. [Google Scholar]
- Marti, C. Morphologie von verzweigten Gerinnen: Ansätze zur Abfluss-, Geschiebetransport-und Kolktiefenberechnung (‘Morphology of Branched Streams: Approaches for Discharge, Bedload and Scour Calculations’); VAW-Mitteilungen 199; Minor, H.-E., Ed.; VAW, ETH Zurich: Zurich, Switzerland, 2006. (In German) [Google Scholar]
- Bose, S.K.; Dey, S. Sediment entrainment probability and threshold of sediment suspension: Exponential-based approach. JHE 2013, 139, 1099–1106. [Google Scholar] [CrossRef]
- Ferguson, R.I.; Church, M. A simple universal equation for grain settling velocity. JSR 2004, 74, 933–937. [Google Scholar] [CrossRef]
- Fernandez Luque, R.; Van Beek, R. Erosion and transport of bed-load sediment. JHR 1976, 14, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Prancevic, J.P.; Lamb, M.P. Particle friction angles in steep mountain channels. JGR Earth Surf. 2015, 120, 242–259. [Google Scholar] [CrossRef]
- Huda, S.A.; Small, E.E. Modeling the effects of bed topography on fluvial bedrock erosion by saltating bed load. JGR Earth Surf. 2014, 119, 1222–1239. [Google Scholar] [CrossRef]
- Prandtl, L. Führer durch die Strömungslehre (‘Guide through Fluid Mechanics’); Vieweg und Sohn: Braunschweig, Germany, 1949. (In German) [Google Scholar]
- Müller-Hagmann, M.; Albayrak, I.; Boes, R.M. Field calibration of bedload monitoring system in a sediment bypass tunnel: Swiss plate geophone. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017; pp. 995–1004. [Google Scholar]
- Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows; A. A. Balkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Auel, C.; Albayrak, I.; Boes, R.M. Turbulence characteristics in supercritical open channel flows: Effects of Froude number and aspect ratio. JHE 2014, 140, 04014004. [Google Scholar] [CrossRef]
- Nakajima, H.; Otsubo, Y.; Omoto, Y. Abrasion and corrective measurement of a sediment bypass system at Asahi Dam. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, Zurich, Switzerland, 27–29 April 2015; Boes, R.M., Ed.; [Google Scholar]
- Müller-Hagmann, M.; Auel, C.; Albayrak, I.; Boes, R.M. Bedload transport and hydro-abrasive erosion at steep bedrock rivers and hydraulic structures. In Proceedings of the Riverflow 2018, Lyon-Villeurbanne, France, 5–8 September 2018. [Google Scholar]
- Johnson, J.P.; Whipple, K.X. Feedbacks between erosion and sediment transport in experimental bedrock channels. ESPL 2007, 32, 1048–1062. [Google Scholar] [CrossRef]
- Kunterding, R. Beanspruchung der Oberfläche von Stahlbetonsilos durch Schüttgüter (2018Surface Stress of Concrete Silos due to Bulk Solids’). Ph.D. Thesis, Institut für Massivbau und Baustofftechnologie, Karlsruhe, Germany, 1991. (In German). [Google Scholar]
- Haroske, G. Beitrag zum Hydroabrasionsverschleiss von Betonoberflächen (‘Contribution to Hydroabrasive Wear at Concrete Surfaces’). Ph.D. Thesis, University Rostock, Rostock, Germany, 1998. (In German). [Google Scholar]
- Horszczaruk, E. Abrasion resistance of high-strength concrete in hydraulic structures. Wear 2005, 259, 62–69. [Google Scholar] [CrossRef]
- Vogel, M. Schädigungsmodell für die Hydroabrasionsbeanspruchung zur probabilistischen Lebensdauerprognose von Betonoberflächen im Wasserbau (Hydroabrasion Harming Model for Probabilistic Service Life Prediction of Hydraulic Structures). Ph.D. Thesis, Technical University Karlsruhe, Karlsruhe, Germany, 2011. (In German). [Google Scholar]
- Kryžanowski, A.; Mikoš, M.; Šušteršič, J.; Ukrainczyk, V.; Planinc, I. Testing of concrete abrasion resistance in hydraulic structures on the Lower Sava River. SV-JME 2012, 58, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Spörel, F.; Helbig, U.; Westendrap, A.; Stamm, J. Hydroabrasionsbeanspruchung von Verkehrswasserbauwerken (‘Hydroabrasive Impact at Water Traffic Structures’). Bautechnik 2015, 92, 538–548. [Google Scholar] [CrossRef]
- Bovet, T. Contribution à l’étude du phénomène d’erosion par frottement dans le domaine des turbines hydrauliques (‘Contribution to the Study of the Phenomenon of Friction Erosion at Hydraulic Turbines’). Bulletin Technique de la Suisse Romande 1958, 84, 37–49. (In French) [Google Scholar]
- Wellinger, K.; Uetz, H. Gleitverschleiß, Spülverschleiß, Stahlverschleiß unter der Wirkung von körnigen Stoffen (‘Sliding, Flushing and Jetting Wear under the Impact of Granular Materials’); VDI-Verlag: Düsseldorf, Germany, 1955. [Google Scholar]
- Uetz, H. Abrasion und Erosion (‘Abrasion and Erosion’); Verlag Carl Hanser: München, Germany, 1986. (In German) [Google Scholar]
- Bajracharya, T.; Acharya, B.; Joshi, C.; Saini, R.; Dahlhaug, O. Sand erosion of Pelton turbine nozzles and buckets: A case study of Chilime hydropower plant. Wear 2008, 264, 177–184. [Google Scholar] [CrossRef]
- Winkler, K.; Dekumbis, R.; Wedmark, A. Finding a way to estimate the amount of abrasion. In Proceedings of the Hydro 2010, Lisbon, Spain, 27–29 September 2010. [Google Scholar]
- Hillerborg, A.; Modéer, M.; Petersson, P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Demiral, D.; Albayrak, I.; Boes, R.M. Particle saltation trajectories in supercritical open channel flows over a smooth fixed bed. In Proceedings of the 3rd Intnernational Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, 9–12 April 2019; pp. 146–153. [Google Scholar]
Reservoir | Unit | Pfaffensprung | Runcahez | Lago di Rierna |
Completion | [year] | 1922 | 1962 | 1967 |
Position | 46°42′49.8″ N 8°36′36.7″ E | 46°40′45.0″ N 8°58′05.7″ E | 46°21′38.9″ N 8°55′27.0″ E | |
Volume | [106 m3] | 0.17 | 0.44 | 0.40 |
Capacity Inflow Ratio (CIR*) | [year] | 0.0003 | 0.006 | 0.01 |
River Upstream of Reservoir | Reuss | Rein da Sumvitg | Rierna | |
Mean slope S | [–] | 0.0374 | 0.0365 | 0.10 |
Mean width b | [m] | 18 | 15 | 5 |
Bank slope (idealized) | [–] | 1:1 | 1:1 | 1:1 |
Mean sediment particle size dm | [m] | 0.25 | 0.23 | 0.18 |
90-percentile sediment particle size d90 | [m] | 0.68 | 0.53 | 0.75 |
Strickler roughness coefficient kSt | [m1/3/s] | 22.5 | 23.5 | 22.1 |
Sediment Bypass Tunnel SBT | Pfaffensprung | Runcahez | Val d’Ambra | |
Completion | [year] | 1922 | 1962 | 1967 |
Length L/acceleration length Lacc** | [m] | 282/25 | 572/65 | 512/55 |
Slope S/acceleration slope Sacc ** | [–] | 0.03/0.35 | 0.014/0.25 | 0.02/1.0 |
Width b | [m] | 4.4 | 3.8 | 3.6 |
Equivalent sand roughness ks | [mm] | 3 | 3 | 3 |
Design Qd/maximum discharge Qmax | [m3/s] | 220/240 | 110/190 | 85 |
General operation duration T | [d/year] | 100–200 | 1–4 | 2.5 |
Observation duration | [year] | 4/2 *** | 19 | 47 |
Tested invert materials | [–] | Concrete, granite | Concrete | Concrete |
Material | fc [MPa] | fst [MPa] | ρc [to/m3] | YM [GPa] |
---|---|---|---|---|
Pfaffensprung | ||||
High-strength concrete 1 (C1) | 108 ± 2 | 11.3 ± 0.3 | 2.46 ± 0.03 | 38.6 ± 5.3 |
High-strength concrete 2 (C2) | 78 ± 21 | 11.2 ± 1.1 | 2.45 ± 0.045 | 34.6 ± 11.9 |
Urner Granite 1 and 2 (G1 and G2) | 260 ± 20 | 10 ± 2 | 2.65 ± 0.05 | 59.0 ± 2.7 |
Runcahez | ||||
Silica fume concrete (SC) | 85.9 ± 3.1 | 8.5 ± 2.1 | 2.67 ±0.02 | 54.1 ± 2.8 |
High performance concrete (HPC) | 76.7 ± 2.0 | 7.1 ± 3.0 | 2.98 ±0.02 | 52.7 ± 4.1 |
Steel fiber concrete (SF) | 95.9 ± 2.3 | 8.3 ± 2.0 | 2.73 ± 0.01 | 52.1 ± 2.7 |
Roller compacted concrete (RCC) | 55.7 ± 4.6 | 6.1 ± 1.0 | 2.56 ± 0.05 | 49.7 ± 1.3 |
Polymer concrete (PC) | 66.8 ± 3.0 | 11.7 ± 1.0 | 2.37 ± 0.03 | 16.3 ± 1.3 |
Val d’Ambra | ||||
Concrete | 40 * | 3.4 ** | 2.5 * | 28.1 *** |
Parameter | Unit | 1967–2014 |
---|---|---|
Mean annual SBT operation duration T | [d/year] | 2.50 |
Mean discharge in SBT SBT | [m3/s] | 42.5 |
Mean flow depth | [m] | 1.60 |
Mean flow velocity | [m/s] | 8.30 |
Mean Shield’s parameter | [–] | 0.18 |
Mean annual bedload mass BL | [103 to/year] | 21.0 |
Mean annual abrasion depth am | [mm/year] | 3.0 |
Parameter | Unit | 2012 | 2013 | 2014 | 2015 | Average |
SBT operation duration T | [d] | 91 | 61 | 55 | 96 | 76 |
Mean discharge in SBT SBT | [m3/s] | 35.5 | 32.6 | 25.9 | 34.5 | 32.1 |
Mean flow depth | [m] | 0.82 | 0.76 | 0.61 | 0.80 | 0.75 |
Mean flow velocity | [m/s] | 9.8 | 9.8 | 9.7 | 9.8 | 9.8 |
Mean Shield’s parameter | [–] | 0.042 | 0.039 | 0.035 | 0.042 | 0.040 |
Bedload mass BL | [103 to/year] | 460 | 370 | 140 | 430 | 350 |
Mean Abrasion Depths am | 2012 | 2013 | 2014 | 2015 | 2012–2015 | |
High-strength concrete 1 (C1) | [mm] | 15.4 | 9.3 | 1.3 | 5.0 | 31.0 |
High-strength concrete 2 (C2) | [mm] | - | 8.9 | 1.5 | - | 10.4 |
Urner Granite 1 (G1) | [mm] | 2.9 | 0.6 | 0.5 | 1.3 | 5.3 |
Urner Granite 2 (G2) | [mm] | - | 1.4 | 0.6 | - | 2.0 |
Parameter | Unit | 1996–1999 | 2000–2014 | Average |
Mean SBT operation duration T | [d/year] | 1.63 | 1.37 | 1.50 |
Mean discharge in SBT SBT | [m3/s] | 56.4 | 55.7 | 55.9 |
Mean flow depth | [m] | 2.01 | 2.00 | 2.00 |
Mean flow velocity | [m/s] | 7.38 | 7.35 | 7.35 |
Mean Shield’s parameter | [–] | 0.036 | 0.036 | 0.036 |
Mean bedload mass BL | [103 to/year] | 10.1 | 10.7 | 10.6 |
Mean Abrasion Depths am | 1996–1999 | 2000–2014 | 1996–2014 | |
Silica fume concrete (SC) | [mm/year] | 1.6 | 0.7 | 16.8 |
High performance concrete (HPC) | [mm/year] | 1.5 | 0.9 | 20.0 |
Steel fiber concrete (SF) | [mm/year] | 1.0 | 1.2 | 21.9 |
Roller compacted concrete (RCC) | [mm/year] | 1.4 | - | - |
Polymer concrete (PC) | [mm/year] | 0.4 | 1.1 | 27.7 |
kv (106) | |||
---|---|---|---|
Material | Compressive Strength | SAM | SAMA |
High-strength concrete | fc ≈ 75–110 MPa | 1.3 | 0.19 |
Granite | fc ≈ 240–280 MPa | 14.0 | 2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Hagmann, M.; Albayrak, I.; Auel, C.; Boes, R.M. Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels. Water 2020, 12, 469. https://doi.org/10.3390/w12020469
Müller-Hagmann M, Albayrak I, Auel C, Boes RM. Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels. Water. 2020; 12(2):469. https://doi.org/10.3390/w12020469
Chicago/Turabian StyleMüller-Hagmann, Michelle, Ismail Albayrak, Christian Auel, and Robert M. Boes. 2020. "Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels" Water 12, no. 2: 469. https://doi.org/10.3390/w12020469
APA StyleMüller-Hagmann, M., Albayrak, I., Auel, C., & Boes, R. M. (2020). Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels. Water, 12(2), 469. https://doi.org/10.3390/w12020469