Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco)
Abstract
:1. Introduction
2. Study Area
Geology
3. Materials and Methods
3.1. Groundwater Influencing Factors
3.1.1. Topographical Factors
3.1.2. Hydrological Factors
3.1.3. Geological Factors
3.2. Analytical Hierarchy Process (AHP) Model
3.3. Standardization of Thematic Layers by AHP Model
3.4. Normalization of Weight for Thematic Layers by AHP Model
3.5. Definition of the GWPI
4. Results and Discussion
Mapping and Validation of Groundwater Potential Map
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bastani, M.; Kholghi, M.; Rakhshandehroo, G.R. Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm. Hydrogeol. J. 2010, 18, 1191–1203. [Google Scholar] [CrossRef]
- Le Page, M.; Berjamy, B.; Fakir, Y.; Bourgin, F.; Jarlan, L.; Abourida, A.; Benrhanem, M.; Jacob, G.; Huber, M.; Sghrer, F. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour. Manag. 2012, 26, 3209–3230. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.; Singh, C.K.; Mukherjee, S. Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resour. Manag. 2012, 26, 2643–2672. [Google Scholar] [CrossRef]
- Vaux, H. Groundwater under stress: The importance of management. Environ. Earth Sci. 2011, 62, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Boutaleb, S.; Boualoul, M.; Bouchaou, L.; Oudra, M. Application of Remote-Sensing and Surface Geophysics for Groundwater Prospecting in a Hard Rock Terrain, Morocco; Adelana, S.M.A., MacDonald, A.M., Eds.; IAH Book Series; IAH: Reading, UK, 2008; pp. 215–227. [Google Scholar]
- Israil, M.; Al-Hadithi, M.; Singhal, D.C. Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeol. J. 2006, 14, 753–759. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdary, V.M.; Chowdhury, A. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol. J. 2010, 18, 1713–1728. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; International Paperback; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Razandi, Y.; Pourghasemi, H.R.; Neisani, N.S.; Rahmati, O. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci. Inform. 2015, 8, 867–883. [Google Scholar] [CrossRef]
- Madrucci, V.; Taioli, F.; de Araújo, C.C. Groundwater Favorability Map Using GIS Multicriteria Data; ELSEVIER: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Chenini, I.; Mammou, A.B.; El May, M. Groundwater recharge zone mapping using GIS-based multi-criteria analysis: A case study in Central Tunisia (Maknassy Basin). Water Resour. Manag. 2010, 24, 921–939. [Google Scholar] [CrossRef]
- Oudra, M.; Beraaouz, H.; Ikenne, M.; Gasquet, D.; Soulaimani, A. La Tectonique Panafricaine du Secteur d’Igherm: Implication des dômes extensifs tardi à post-orogéniques (Anti-Atlas occidental, Maroc). Estudios Geológicos 2005, 61, 177–189. [Google Scholar] [CrossRef]
- Boudda, A.; Choubert, G.; Faure-Muret, A. Essai De Stratigraphie De La Couverture Sédimentaire De L’Anti-Atlas: Adoudounien-Cambrien Inférieur Editions Du Service Géologique Du Maroc; Service Géologique: Rabat, Maroc, 1979. [Google Scholar]
- Oudra, M. La Structuration Panafricaine Dans La Partie Nord-Ouest De La Boutonnière D’Irhem (Anti-Atlas Occidental-Maroc); Université Cadi Ayyad: Marrakech, Maroc, 1988. [Google Scholar]
- Benssaou, M.; Hamoumi, N. The western Anti-Atlas of Morocco: Sedimentological and palaeogeographical formation studies in the Early Cambrian. J. Afr. Earth Sci. 2001, 32, 351–372. [Google Scholar] [CrossRef]
- Mogaji, K.A.; Lim, H.S.; Abdullah, K. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab. J. Geosci. 2015, 8, 3235–3258. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Al-Temmeme, A.A.; Al-Ghanimy, M.A. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustain. Water Resour. Manag. 2016, 2, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Probabilistic frequency ratio model for groundwater potential mapping in Al Jaww plain, UAE. Arab. J. Geosci. 2015, 8, 2405–2416. [Google Scholar] [CrossRef]
- Dinesh Kumar, P.K.; Gopinath, G.; Seralathan, P. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. Int. J. Remote Sens. 2007, 28, 5583–5601. [Google Scholar] [CrossRef]
- Gannouni, S.; Gabtni, H. Structural interpretation of lineaments by satellite image processing (Landsat TM) in the region of Zahret Medien (Northern Tunisia). J. Geogr. Inf. Syst. 2015, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications; RWS: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Shekhar, S.; Pandey, A.C. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int. 2015, 30, 402–421. [Google Scholar] [CrossRef]
- Algaydi, B.A.M.; Subyani, A.M.; Hamza, M.H.M.M. Investigation of Groundwater Potential Zones in Hard Rock Terrain, Wadi Na’man, Saudi Arabia. Groundwater 2019, 57, 940–950. [Google Scholar] [CrossRef]
- Adeyeye, O.A.; Ikpokonte, E.A.; Arabi, S.A. GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. Egypt. J. Remote Sens. Space Sci. 2019, 22, 175–181. [Google Scholar] [CrossRef]
- Das, S. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Model. Earth Syst. Environ. 2017. [Google Scholar] [CrossRef] [Green Version]
- Lasm, T.; Kouame, F.; Oga, M.S.; Jourda, J.R.P.; Soro, N.; Kouadio, B.H. Étude De La Productivité Des Réservoirs Fracturés Des Zones De Socle Cas Du Noyau Archéen De Man-Danané (Ouest De La Côte d’Ivoire); Revue Ivoirienne des Sciences et Technologie: Abidjan, Côte d’Ivoire, 2004. [Google Scholar]
- Morjani, E.; Abidine, Z.E. Conception D’un Système D’information À Référence Spatiale Pour La Gestion Environnementale: Application À La Sélection De Sites Potentiels De Stockage De Déchets Ménagers Et Industriels En Région Semi-Aride (Souss, Maroc); University of Geneva: Geneva, Switzerland, 2002. [Google Scholar]
- Jourda, J.P.; Saley, M.B.; Djagoua, É.V.; Kouamé, K.J.; Biémi, J.; Razack, M. Utilisation Des Données ETM+ De Landsat Et D’un SIG Pour L’évaluation Du Potentiel En Eau Souterraine Dans Le Milieu Fissuré Précambrien De La Région De Korhogo (Nord De La Côte d’Ivoire); Contemporary Publishing International: Paris, France, 2006. [Google Scholar]
Factor (Units) | Class | Rating | Factor (Units) | Class | Rating |
---|---|---|---|---|---|
Slope degree (%) | 0–8.3 | 10 | Nodes Density | 0–0.17 | 2 |
8.4–15 | 8 | 0.18–0.52 | 4 | ||
16–23 | 6 | 0.53–1.1 | 6 | ||
24–32 | 4 | 1.2–1.6 | 8 | ||
33–66 | 2 | 1.7–2.5 | 10 | ||
Distance from river (m) | 0–300 | 10 | Distance from lineaments (m) | 0–300 | 10 |
300–600 | 8 | 300–600 | 8 | ||
600–900 | 6 | 600–900 | 6 | ||
900–1200 | 4 | 900–1200 | 4 | ||
1200–1500 | 2 | >1200 | 2 | ||
Lithology | High permeability | 10 | TWI | 6–9.7 | 2 |
Medium permeability | 8 | 9.8–13 | 4 | ||
Low permeability | 6 | 14–26 | 6 | ||
Lineaments density | 0–0.6 | 2 | Profile curvature | −6.5–(−0.01) | 2 |
0.61–1 | 4 | −0.009–0 | 4 | ||
1.1–1.4 | 6 | ||||
1.5–1.9 | 8 | 0.01–8.1 | 6 | ||
2–3.0 | 10 | ||||
Drainage density (km/km2) | 0–0.47 | 10 | Plan curvature | −4.1–(−0.1) | 6 |
0.48–0.74 | 8 | −0.09–0 | 4 | ||
0.75–0.98 | 6 | 0.01–4.9 | 2 | ||
0.99–1.2 | 4 | ||||
1.3–2.1 | 2 | ||||
Faults density | 0–0.19 | 2 | |||
0.2–0.55 | 4 | ||||
0.56–0.95 | 6 | ||||
0.96–1.5 | 8 | ||||
1.6–2.2 | 10 |
Importance | Scale |
---|---|
Equal importance | 1 |
Weak | 2 |
Moderate importance | 3 |
Moderate plus | 4 |
Less important | 1/2 |
Moderately less important | 1/3 |
Much less important | 1/4 |
Factors | Slope | D. Density | F. Density | Lithology | TWI | Plan Curvature | Profile Curvature | Distance from River | L. Density | Distance from LINEAMENT | N. Density |
---|---|---|---|---|---|---|---|---|---|---|---|
Slope | 1.00 | 1/2 | 1/2 | 1/2 | 3.00 | 2.00 | 2.00 | 1/2 | 1/3 | 1/2 | 1/2 |
D. density | 2.00 | 1.00 | 2.00 | 3.00 | 4.00 | 3.00 | 3.00 | 3.00 | 1.00 | 2.00 | 2.00 |
F. density | 2.00 | 1/2 | 1.00 | 1/3 | 2.00 | 3.00 | 3.00 | 4.00 | 1.00 | 1/2 | 1/3 |
Lithology | 2.00 | 1/3 | 3.00 | 1.00 | 3.00 | 2.00 | 2.00 | 2.00 | 3.00 | 2.00 | 1.00 |
TWI | 1/3 | 1/2 | 1/2 | 1/3 | 1.00 | 2.00 | 2.00 | 1/2 | 1/3 | 1/3 | 1/4 |
Plan curvature | 1/2 | 1/3 | 1/3 | 1/2 | 1/2 | 1.00 | 1.00 | 2.00 | 1/3 | 2.00 | 1/3 |
Profile curvature | 1/2 | 1/3 | 1/3 | 1/2 | 1/2 | 1.00 | 1.00 | 2.00 | 1/3 | 2.00 | 1/3 |
Distance from river | 2.00 | 1/3 | 1/4 | 1/2 | 2.00 | 1/2 | 1/2 | 1.00 | 1/4 | 1.00 | 1/2 |
L. density | 3.00 | 1.00 | 1.00 | 1/3 | 3.00 | 3.00 | 3.00 | 4.00 | 1.00 | 1/2 | 1/2 |
Distance from Lineament | 2.00 | 1/2 | 2.00 | 1/2 | 3.00 | 1/2 | 1/2 | 1.00 | 2.00 | 1.00 | 1/3 |
N. Density | 2.00 | 1/2 | 3.00 | 1.00 | 4.00 | 3.00 | 3.00 | 2.00 | 2.00 | 3.00 | 1.00 |
Factors | Slope | D. Density | F. Density | Lithology | TWI | Plan Curvature | PROFILE Curvature | Distance from River | L. Density | Distance from Lineament | N. Density | Weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | 0.06 | 0.05 | 0.04 | 0.07 | 0.12 | 0.09 | 0.09 | 0.02 | 0.03 | 0.03 | 0.10 | 0.64 |
D. density | 0.12 | 0.11 | 0.14 | 0.26 | 0.12 | 0.14 | 0.14 | 0.10 | 0.05 | 0.13 | 0.06 | 1.24 |
F. density | 0.12 | 0.05 | 0.07 | 0.04 | 0.08 | 0.14 | 0.14 | 0.19 | 0.10 | 0.03 | 0.06 | 0.93 |
Lithology | 0.12 | 0.05 | 0.22 | 0.13 | 0.12 | 0.09 | 0.09 | 0.10 | 0.20 | 0.13 | 0.19 | 1.31 |
TWI | 0.02 | 0.03 | 0.04 | 0.04 | 0.04 | 0.09 | 0.09 | 0.02 | 0.03 | 0.02 | 0.05 | 0.44 |
Plan curvature | 0.03 | 0.03 | 0.02 | 0.07 | 0.02 | 0.05 | 0.05 | 0.10 | 0.03 | 0.13 | 0.05 | 0.52 |
Profile curvature | 0.03 | 0.03 | 0.02 | 0.07 | 0.02 | 0.05 | 0.05 | 0.10 | 0.03 | 0.13 | 0.05 | 0.52 |
Distance from river | 0.12 | 0.05 | 0.02 | 0.07 | 0.08 | 0.02 | 0.02 | 0.05 | 0.02 | 0.07 | 0.10 | 0.56 |
L. density | 0.17 | 0.21 | 0.07 | 0.07 | 0.12 | 0.14 | 0.14 | 0.19 | 0.10 | 0.03 | 0.10 | 1.21 |
Distance from Lineament | 0.12 | 0.05 | 0.14 | 0.07 | 0.12 | 0.02 | 0.02 | 0.05 | 0.20 | 0.07 | 0.06 | 0.84 |
N. density | 0.12 | 0.32 | 0.22 | 0.13 | 0.16 | 0.18 | 0.18 | 0.10 | 0.20 | 0.20 | 0.19 | 1.81 |
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 | 1.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjmel, K.; Amraoui, F.; Boutaleb, S.; Ouchchen, M.; Tahiri, A.; Touab, A. Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 2020, 12, 471. https://doi.org/10.3390/w12020471
Benjmel K, Amraoui F, Boutaleb S, Ouchchen M, Tahiri A, Touab A. Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water. 2020; 12(2):471. https://doi.org/10.3390/w12020471
Chicago/Turabian StyleBenjmel, Khalid, Fouad Amraoui, Said Boutaleb, Mohammed Ouchchen, Amine Tahiri, and Amine Touab. 2020. "Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco)" Water 12, no. 2: 471. https://doi.org/10.3390/w12020471
APA StyleBenjmel, K., Amraoui, F., Boutaleb, S., Ouchchen, M., Tahiri, A., & Touab, A. (2020). Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water, 12(2), 471. https://doi.org/10.3390/w12020471