The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. WET and ML2 Sensors
2.2. Measurement of Physical and Chemical Properties of Soils
2.3. Mineralogical Analysis
2.4. Measurement of Volumetric Water Content and Apparent Dielectric Permittivity of Soils
2.5. Performance Evaluation Criteria
3. Results and Discussion
3.1. Physical and Chemical Soil Properties
3.2. Relationship between Actual Soil Water Content and Apparent Dielectric Permittivity
3.3. Soil Specific Calibration
3.4. Sand-Soil Ratio
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Kargas, G.; Kerkides, P. Water content determination in mineral and organic porous media by ML2 theta probe. Irrig. Drain. 2008, 57, 435–449. [Google Scholar] [CrossRef]
- Topp, G.C.; Reynolds, W. Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil Tillage Res. 1998, 47, 125–132. [Google Scholar] [CrossRef]
- Ferre, P.A.; Topp, G.C. Time domain reflectometry. In Methods of Soil Analysis; Part 4-Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 434–446. [Google Scholar]
- Kargas, G.; Kerkides, P.; Seyfried, M.; Sgoumbopoulou, A. WET Sensor Performance in Organic and Inorganic Media with Heterogeneous Moisture Distribution. Soil Sci. Soc. Am. J. 2011, 75, 1244–1252. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Seyfried, M. Response of Three Soil Water Sensors to Variable Solution Electrical Conductivity in Different Soils. Vadose Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K. Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor. Agric. Water Manag. 2019, 213, 568–579. [Google Scholar] [CrossRef]
- Hamed, Y.; Samy, G.; Persson, M. Evaluation of the WET sensor compared to time domain reflectometry. Hydrol. Sci. J. 2006, 51, 671–681. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Delta-T Devices. User Manual for the WET Sensor (Type WET-2); Delta-T Device Ltd.: Cambridge, UK, 2007. [Google Scholar]
- Delta-T Device. User Manual for the MML2 Sensor; Delta-T Device Ltd.: Cambridge, UK, 1999. [Google Scholar]
- Inoue, M.; Ahmed, B.O.; Saito, T.; Irshad, M. Comparison of Twelve Dielectric Moisture Probes for Soil Water Measurement under Saline Conditions. Am. J. Environ. Sci. 2008, 4, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.E. Dielectric Properties and Influence of Conductivity in Soils at One to Fifty Megahertz. Soil Sci. Soc. Am. J. 1990, 54, 332–341. [Google Scholar] [CrossRef]
- Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Robinson, D.A.; Bell, J.; Batchelor, C. Influence of iron minerals on the determination of soil water content using dielectric techniques. J. Hydrol. 1994, 161, 169–180. [Google Scholar] [CrossRef]
- Van Dam, R.; Schlager, W.; Dekkers, M.J.; Huisman, J.A. Iron oxides as a cause of GPR reflections. Geophys. 2002, 67, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Pettinelli, E.; Vannaroni, G.; Cereti, A.; Pisani, A.R.; Paolucci, F.; Del Vento, D.; Dolfi, D.; Riccioli, S.; Bella, F. Laboratory investigations into the electromagnetic properties of magnetite/silica mixtures as Martian soil simulants. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P. Performance of the theta probe ML2 in the presence of nonuniform soil water profiles. Soil Tillage Res. 2009, 103, 425–432. [Google Scholar] [CrossRef]
- Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No.42, Version 4.0, November 2004; United States Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2004.
- Mehra, O.P. Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays Clay Miner. 1958, 7, 317–327. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; N.Z. Soil Bureau, Scientific Report 80; N.Z. Soil Bureau: Lower Hutt, New Zealand, 1987.
- Bascomb, C.L. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 1968, 19, 251–268. [Google Scholar] [CrossRef]
- Chen, M.; Ma, L.Q. Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils. Soil Sci. Soc. Am. J. 2001, 65, 491–499. [Google Scholar] [CrossRef] [Green Version]
- U.S. Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Salinity Laboratory Office: Washington, DC, USA, 1954.
- Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A method of measuring soil moisture by time-domain reflectometry. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- White, I.; Knight, J.; Zegelin, S.; Topp, G. Comments on ‘Considerations on the use of time-domain reflectometry (TDR) for measuring soil water content’ by W.R. Whalley. Eur. J. Soil Sci. 1994, 45, 503–508. [Google Scholar] [CrossRef]
- Spaans, E.J.A.; Baker, J.M. The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic. Soil Sci. Soc. Am. J. 1996, 60, 13–19. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K. Performance Analysis and Calibration of a New Low-Cost Capacitance Soil Moisture Sensor. J. Irrig. Drain. Eng. 2012, 138, 632–641. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Murdock, M.D. Measurement of soil water content with a 50 MHz soil dielectric sensor. Soil Sci. Soc. Amer. J. 2004, 68, 394–403. [Google Scholar] [CrossRef]
Soil Sample | Sand (%) | Silt (%) | Clay (%) | Texture | CaCO3 (%) | CEC (cmol+ Kg−1) | Organic Matter (%) |
---|---|---|---|---|---|---|---|
soil 1 | 62.0 | 16.0 | 22.0 | Sandy loam | 1.47 | 15.20 | 2.17 |
soil 2 | 66.0 | 24.0 | 10.0 | Sandy loam | 2.1 | 12.3 | 0.43 |
Content of Different Forms of Iron Oxides (%) | ||||
---|---|---|---|---|
Soil Sample | Free iron Oxides (Fe2O3d) | Amorphous Iron Oxides (Fe2O3o) | Organic Matter-Bound Iron Oxides (Fe2O3p) | Total Iron |
Soil 1 | 5.97 | 6.73 | 0.44 | 30.12 |
Soil 2 | 9.72 | 1.33 | 0.024 | 33.07 |
Soil | WET | ML2 | ||
---|---|---|---|---|
a | b | a | b | |
Soil 1 | 0.073 | 0.133 | 0.102 | 0.183 |
Soil 2 | 0.060 | 0.116 | 0.093 | 0.182 |
SL | 0.104 | 0.173 | 0.116 | 0.195 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kargas, G.; Londra, P.; Anastasatou, M.; Moustakas, N. The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors. Water 2020, 12, 598. https://doi.org/10.3390/w12020598
Kargas G, Londra P, Anastasatou M, Moustakas N. The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors. Water. 2020; 12(2):598. https://doi.org/10.3390/w12020598
Chicago/Turabian StyleKargas, George, Paraskevi Londra, Marianthi Anastasatou, and Nick Moustakas. 2020. "The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors" Water 12, no. 2: 598. https://doi.org/10.3390/w12020598
APA StyleKargas, G., Londra, P., Anastasatou, M., & Moustakas, N. (2020). The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors. Water, 12(2), 598. https://doi.org/10.3390/w12020598