Inverse Estuaries in West Africa: Evidence of the Rainfall Recovery?
Abstract
:1. Problematics, State of the Art
- -
- a very rainy period from 1950 to 1967
- -
- a long and very dry period from 1968 to 1993 (whole West Africa) and from 1968 to 1998 in Senegambia and Mauritania
- -
2. Methodology
- -
- Sa is salinity in psu,
- -
- σ is conductivity (mS/cm).
- -
- T is temperature in °C.
- -
- Refractometers were calibrated with distillated water at the beginning and at the end of each measurement fraction of the day.
- -
- Conductimeters were calibrated with standard dilution products supplied by the provider at the beginning and at the end of each measurement fraction of day in order to ensure the quality of measured data.
3. Results
3.1. Casamance Estuary
- -
- The salinity annual variation increases from the mouth (located 2 km downstream from Karabane station) to the upstream part of the estuary.
- ○
- ○
- it also increases from the main branch to secondary branches, the “tributaries” coming from the North, at Baila on the “Baila bolon” (Figure 5d; bolon is the mandinka name given to the saline rivers of the mangroves in West Africa), and from the South, at Niambalang on the Kamobeul bolon (Figure 5e);
- -
- The mean salinity values remain close to those of the sea (slightly above, at 40 g/L instead of 35 g/L) in the estuary (at least until Goudomp), as well as in the south branch of Kamobeul Bolon; it is significantly higher in the northern branch of the Baila Bolon (55 g/L).
- -
- There is along all the year a fresh water income at the upstream entry of the main branch of the Casamance estuary (at Diopcounda Bridge); the same observation is made at the upstream origin of its main tributary, the Soungrougrou (Diaroumé Bridge); however, fresh water discharge is significantly lower in this river;
- -
- There is always an estuarine turbidity maximum (ETM, [36,37]) in the upper part of both the Soungrougrou and the Casamance;
- ○
- This area moves upstream during the dry season and it reaches the highest salinity values of the main reach of the Casamance (70 g/L in the Casamance, 100 g/L in the Soungrougrou);
- ○
- It moves downstream during the rainy season, pushed by the fresh water discharge coming from the (small) basin of the Casamance and Soungrougrou rivers. The salinity values decrease during this period;
- ○
- Downstream of this moving peak, salinity decreases all year long; then, Casamance river has an inverse estuary, however, its upper part has a normal functioning during a few kilometers in the dry season and over some tens of kilometers in rainy season;
- ○
- In the main branch (Casamance), a second salinity peak is observed during some seasons at the confluence with the Soungrougrou river, due to the upper salinity values of the latter;
- ○
- As observed in Figure 4a–f, salinity values are lower in the rainy season and higher in the dry season in the tributary bolons than in the main reach of the Casamance river estuary.
3.2. Saloum Estuary
- -
- The fresh water discharge in the rainy season is quasi null and thus completely negligible;
- -
- Values are lower during the rainy season due to lower evaporation, rain fallen within the wide estuary zone, and the sum of many small inputs by surficial runoff and small bolons;
- -
- The estuary has an inverse behavior all year long;
- -
- The salinity always increases upwards; the maximal values are always measured completely upstream, at Kaolack bridge in the Saloum and at Fatick Bridge in the Sine river;
- -
- The salinity is higher in the north branch of Saloum estuary than that in the mid one (Diomboss) and overall than that in the southern one (Bandiala) (see location Figure 4a);
- -
- The Bandiala bolon is provided in fresh water by the Nema Bah river, which is a small permanent fresh water river; water comes from the abundant water table of the southern Saloum plateau.
4. Discussion
4.1. A Comparison with Historical Data
- -
- 1978–1979 (in [32])
- -
- 2016–2019 (our measurements)
- -
- The minimal salinity values are more pronounced during the first period; however, this is partially due to the fact that in the second period, only two measurements per year are made;
- -
- Salinity increases between the first and the second period in all the upper valleys (Baila Bolon at Baila, Soungrougrou at Diaroumé and Kandialo, and Casamance at Diopcounda);
- -
- It decreases only at the Guidel station;
- -
- It remains approximately equal in the mid basins (Sedhiou in the Casamance, Marsassoum in the Soungrougrou) and the lower valley (Etomé and Pointe St Georges).
- -
- From 0 to 50 km: a marine domain, with salinity, tides, and behavior close to those of the sea;
- -
- From 50 to 85 km: an intermediary area, with increasing salinity;
- -
- From 85 to 175 km: an hyperhaline area where salinity can reach 100 g/L;
- -
- From 175 to 225 km: an alternative domain where salinity can vary from 0 to 100 g/L between rainy and dry season and during a few weeks only;
- -
- Upstream from 225 km: fresh water with low discharge of the continental area.
4.2. An Integrative Indicator: The Mangrove
4.3. Low Discharges Explaining the Inverse Estuaries
5. Conclusions
- -
- The Saloum River estuary has a total inverse behavior, with salinity increasing upwards;
- -
- The Casamance estuary has a spatially partial inverse functioning, with a point of maximum salinity migrating from 20–30 km of the upstream end estuary at the end of the dry season to 50–80 km downstream from this point at the end of the rainy season.
- -
- Therefore, about the spatial variability, we observed:
- -
- decreasing salinity downwards from the peak of the ETM in the Casamance estuary and from the upstream entry of the estuary at Kaolack in the Saloum river;
- -
- Increasing salinity seasonal variability in the tributary bolongs;
- -
- A similar behavior in the bolongs than in the Casamance upper estuary.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paturej, E. Estuaries, Types, Role and Impact on Human Life. 2008. Available online: https://www.researchgate.net/publication/228488312 (accessed on 11 September 2019).
- Pritchard, D.W. What is an estuary: Physical viewpoint. In Estuaries; Lauff, G.H., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 1967; Volume 83, pp. 3–5. [Google Scholar]
- Saos, J.-L.; Thiebaux, J.-P. Evolution de la salinité en Basse Casamance: Exemple du marigot de BAILA; Equipe Pluri Disciplinaire d’Etude des Ecosystèmes Côtiers; Rapport Final; UNESCO Sea Sciences Division, PNUD, UCAD, UNESCO Breda Ed (the NL); Etude des Estuaires du Sénégal: Casamance, Sénégal, 1991. [Google Scholar]
- Alvera-Azcarate, A. 2011. Available online: http://modb.oce.ulg.ac.be/mediawiki/upload/Aida/OCEA0011/3_ESTUARiES.pdf (accessed on 11 September 2019).
- Pagès, J.; Citeau, J. Rainfall and salinity of a Sahelian estuary between 1927 and 1987. J. Hydrol. 1989, 113, 325–341. [Google Scholar] [CrossRef]
- Nunes Vaz, R.A.; Lennon, G.W.; Bowers, D.G. Physical behaviour of a large, negative or inverse estuary. Cont. Shelf Res. 1990, 10, 277–304. [Google Scholar] [CrossRef]
- Tomczak, M. Examples of Estu Aries and Their Classification2000. Available online: https://incois.gov.in/Tutor/ShelfCoast/chapter13.html (accessed on 11 September 2019).
- Lavin, M.F.; Godinez, V.M.; Alvarez, L.G. Inverse-estuarine features of the upper gulf of California. Estuar. Coast. Shelf Sci. 1998, 47, 769–795. [Google Scholar] [CrossRef]
- De Gutierrez Velasco, G.; Winant, C.D. Wind- and Density-driven circulation in a well-mixed inverse estuary. J. Phys. Oceanogr. 2004, 34, 1103–1116. [Google Scholar] [CrossRef]
- Villanueva, M.C. Contrasting tropical estuarine ecosystem functioning and stability: A comparative study. Estuar. Coast. Shelf Sci. March 2015, 155, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Kampf, J.; Sadrinasab, M. The circulation of the Persian Gulf: A numerical study. Ocean Sci. 2006, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Edyvane, K.S. Australia, coastal ecology. In Encyclopedia of Coastal Science; Schwartz, M., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 96–109. [Google Scholar]
- Kampf, J.; Bell, D. The Murray/Coorong estuary: Meeting of the waters. In Estuaries of the World; Wolanski, E., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 31–47. [Google Scholar]
- Kampf, J. South Australia’s Large Inverse Estuaries: On the Road to Ruin. In Estuaries of Australia in 2050 and Beyond, Estuaries of the World; Wolanski, E., Ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Barusseau, J.-P.; Diop, E.S.; Giresse, P.; Monteillet, J.; Saos, J.-L. Conséquences sédimentologiques de l’évolution climatique fini-Holocène (102–103 ans) dans le delta du Saloum (Sénégal). Océanographie Trop. 1986, 21, 69–98. [Google Scholar]
- Billon, B. Le Niger à Niamey: Décrue et étiage 1985. Cah. l’ORSTOM Série Hydrol. 1985, 21, 3–22. [Google Scholar]
- Boivin, P.; Le Brusq, J.-Y. Désertification et salinisation des terres au Sénégal. Problèmes et remèdes. In Proceedings of the National Seminar on desertification, Dakar, Republic of Senegal, 22–26 April 1985. [Google Scholar]
- Barusseau, J.-P.; Diop, E.S.; Saos, J.-L. Evidence of dynamics reversal in tropical estuaries, geomorphological and sedimentological consequences (Salum and Casamance Rivers, Senegal). Sedimentology 1985, 32, 543–552. [Google Scholar] [CrossRef]
- Thior, M.; Sy, A.A.; Diedhiou, S.O.; Cissé, I.; Gomis, J.S.; Descroix, L. Low Casamance inverse estuary: Impacts on water quality and agrosystems in islander area/Estuaire inverse de basse Casamance: Impacts sur la qualité de l’eau et des agrosystèmes en milieu insulaire. Environ. Water Sci. Public Health Territ. Intell. J. 2019, 3, 192–197. [Google Scholar]
- Nicholson, S.E. The West African sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 2013, 453521. [Google Scholar] [CrossRef]
- Descroix, L.; Diongue Niang, A.; Panthou, G.; Bodian, A.; Sané, T.; Dacosta, H.; Malam Abdou, M.; Vandervaere, J.-P.; Quantin, G. Evolution Récente de la Mousson en Afrique de l’Ouest à Travers Deux Fenêtres (Sénégambie et Bassin du Niger Moyen). Climatologie 2015, 12, 25–43. [Google Scholar]
- Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.A.; Panthou, G.; Gal, L.; Dardel, C.; Quantin, G.; Kergoat, L.; Bouaïta, Y.; et al. Evolution of surface hydrology in the Sahelo-Sudanian stripe: An updated synthesis. Water 2018, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sané, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diop Kane, M. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett. 2018, 13, 064013. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Faye, C.; Sané, T. Le changement climatique dans le bassin-versant de la Casamance: Évolution et tendances du climat, impacts sur les ressources en eau et stratégies d’adaptation. In Eaux et Sociétés Face au Changement Climatique Dans le Bassin de la Casamance. Actes de l’Atelier Scientifique et Lancement de l’initiative Casamance: Un Réseau Scientifique au Service du Développement en Casamance. Ziguinchor Sénégal 2015, 15–17, 280. [Google Scholar]
- Mahé, G.; Lienou, G.; Descroix, L.; Bamba, L.; Paturel, J.-E.; Laraque, A.; Meddi, M.; Habaieb, M.; Adeaga, O.; Dieulin, C.; et al. The rivers of Africa: Witness of climate change and human impact on the environment. Hydrol. Process. 2013, 27, 2105–2114. [Google Scholar] [CrossRef]
- Binet, D.; Le Reste, L.; Diouf, P.S. The influence of runoff and fluvial outflow on the ecosystems and living resources of West African coastal waters. In Effects of Riverine Inputs on Coastal Ecosystems and Fisheries Resources; Fisheries Technical Paper No.349; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1995; Volume 349, pp. 89–118. ISBN 978-9251036341. [Google Scholar]
- Gac, J.-Y.; Kane, A. Le fleuve Sénégal: 2- flux continentaux de matières dissoutes à l’embouchure. Sci. Géol. Bull. 1986, 39, 151–172. [Google Scholar]
- Saos, J.-L.; Kane, A.; Carn, M.; Gac, J.-Y. Persistance de la sécheresse au Sahel: Invasion marine exceptionnelle dans la vallée du fleuve Sénégal. In Proceedings of the 10th meeting of Earth Sciences, Bordeaux, France; 1984; p. 499. [Google Scholar]
- Diop, E.S. La Côte Ouest Africaine du Saloum (Sénégal) à la Mellacorée (République de Guinée). Ph.D. Thesis, Université Louis Pasteur, Strasbourg, Paris, France, 1990. [Google Scholar]
- Sakho, I. Evolution et Fonctionnement Hydro-Sédimentaire de la Lagune de la Somone, Petite Côte, Sénégal. Ph.D. Thesis, Université de Rouen, France and Université Cheikh Anta Diop de Dakar, Dakar, Sénégal, 2011. [Google Scholar]
- Marius, C. Mangroves du Sénégal et de la Gambie. Ecologie, Pédologie, Géochimie, Mise en Valeur et Aménagement. Ph.D. Thesis, Louis Pasteur Strasbourg University, Strasbourg, Paris, 1985; 335p. [Google Scholar]
- Diouf-Goudiaby, K. Influence de la salinité sur les déplacements et la croissance des juvéniles d’un poisson ubiquiste, Sarotherodon Melanotheron (Teleosteen, Cichlidae), dans les estuaires ouest-africains. Ph.D. Thèse, Université Montpellier 2, Montpellier, France, 2006; 176p. [Google Scholar]
- Baran, E. Comparaison des ichtyofaunes estuariennes du Sénégal, de Gambie et de Guinée. In Dynamiques et Usages de la Mangrove Dans les Pays des Rivieres du Sud (du Sénégal à la Sierra Leone) M-C; Salem, C., Ed.; ORSTOM Editions, Paris-Bondy: Paris, France, 1994; pp. 84–92. [Google Scholar]
- Noblet., J.-P. 2012. Available online: http://www.jf-noblet.fr/spe2012/2-eau/acti1-sel (accessed on 23 February 2020).
- Toublanc, F.; Brenon, I.; Coulombier, T. Formation and structure of the turbidity maximum in the macrotidal Charente estuary (France): Influence of fluvial and tidal forcing. Estuar. Coast. Shelf Sci. 2016, 169, 1–14. [Google Scholar] [CrossRef]
- Duy Vinh, V.; Ouillon, S.; Van Uu, D. Estuarine turbidity maxima and variations of aggregate parameters in the cam-nam trieu estuary, north vietnam, in early wet season. Water 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Olivry, J.-C.; Dacosta, H. Le Marigot de Baila: Bilan des Apports Hydriques et Evolution de la Salinit; Orstom: Dakar, Senegal, 1984; 150p, Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-07/17933.pdf#search=%22olivry%20dacosta%201984%20baila%22 (accessed on 21 September 2019).
- Olivry, J.-C. Les conséquences durables de la sécheresse actuelle sur l’écoulement du fleuve Sénégal et l’hypersalinisation de la Basse-Casamance. In Proceedings of the Influence of Climate Change and Climatic Variability on the Hydrologie Regime and Water Resources. In Proceedings of the Vancouver Symposium, Vancouver, BC, Canada, 9–22 August 1987).; IAHS Publisher: Wallingford, UK, 1987. [Google Scholar]
- Debenay, J.-P.; Pagès, J. Foraminifères et thécamoebiens de l’estuaire hyperhalin du fleuve Casamance (Sénégal). Revue d’Hydrobiologie Trop. 1987, 20, 233–256. [Google Scholar]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- FAO. Forest Resources Assessment working paper n°63. Forest Resources Division. In Status and Trends in Mangrove Area Extent Worldwide; Wilkie, M.L., Fortuna, S., Eds.; FAO: Rome, Italy, 2003; Available online: http://www.fao.org/docrep/007/j1533e/j1533e00.htm (accessed on 27 February 2020).
- Andrieu, J. Dynamiques des Paysages Dans les Régions Septentrionales des Rivieres-du-Sud (Sénégal, Gambie, Guinée-Bissau). Ph.D. Thèse, Université dé Paris, Paris, France, 2008; 524. [Google Scholar]
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 2008, 63, 578–589. [Google Scholar] [CrossRef]
- Andrieu, J. L’évolution de la Mangrove (1979–2019) du Saloum au Gêba, par Télédétection. In Proceedings of the Communication to the International Colloque Vulnerability of Societies and Environment of Coastal and Estuarine West Africa Held on in Ziguinchor (Senegal), Dakar, Senegal, 19–22 November 2019. [Google Scholar]
- Andrieu, J.; Lombard, F.; Fall, A.; Thior, M.; Ba, B.D.; Diémé, B.E.A. Botanical field-study and remote sensing to describe mangrove resilience in the Saloum Delta (Senegal) after 30 years of degradation narrative. For. Ecol. Manag. 2020, 461, 117963. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Lopez-Portillo, J.; Daya, R.H.; Suman, D.O.; Guzman Menendez, J.M.; Rivera-Monroy, V.H. Mangrove forests in a rapidly changing world: Global change impacts andconservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 2018, 214, 120–140. [Google Scholar] [CrossRef]
- Dièye, E.B.; Diaw, A.T.; Sané, T.; Ndour, N. Dynamique de la mangrove de l’estuaire du Saloum (Sénégal) entre 1972 et 2010. Dynamics of the Saloum estuary mangrove (Senegal) from 1972 to 2010. Cybergeo. Eur. J. Geogr. Environ. Nat. Environ. Nat. Paysage 2013. [Google Scholar] [CrossRef]
- Dacosta, H. Précipitations et Ecoulement Sur le Bassin de la Casamance. Ph.D. Thesis, University Cheikh Anta Diop, Dakar, Senegal, 1989; 283p. [Google Scholar]
- Mendy, A. Ressources en Eau des Bassins Versants de la Nema et de Medina Djikoye. Ph.D. Thesis, University Cheikh Anta Diop, Dakar, Senegal, 2010; 335p. [Google Scholar]
- Sambou, S. Contribution à la Connaissance des Ressources en Eau du Bassin Versant du Fleuve Kayanga/Gêba (Guinée, Sénégal, Guinée-Bissau). Ph.D. Thesis, University Cheikh Anta Diop, Dakar, Senegal, 2019. [Google Scholar]
Site * | Number of Measurements | Number of Averaged Points | % Missing Data | % Corrected Data |
---|---|---|---|---|
Karabane | 129,500 | 804 | 50 | 10 |
Ziguinchor | 127,400 | 873 | 50 | 12 |
Goudomp | 178,200 | 1653 | 20 | 10 |
Baila | 214,700 | 2228 | 5 | |
Niambalang | 168,000 | 1547 | 15 | 8 |
Date Salinity in g.L−1 Place | January 1978 | May 1978 | November 1978 | May 1979 | November 2015 | May 2016 | November 2016 | May 2017 | November 2017 | May 2018 | November 2018 | May 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baila | 46 | 76 | 6 | 68 | 8 | 60 | 18 | 82 | 18 | 88 | 16 | 75 |
Pointe St Georges | 44 | 48 | 30 | 56 | / | / | / | 41 | 35 | 40 | 31 | 43 |
Etomé | 41 | 93 | 4 | 91 | 3 | 88 | 5 | 99 | 15 | 90 | 8 | 100 |
Guidel | 53 | 89 | 0 | 88 | / | 50 | 16 | 65 | 32 | 65 | 17 | 55 |
Marsassoum | 42 | 68 | 20 | 66 | / | / | 35 | 65 | 45 | 65 | 35 | 62 |
Kandialo | 16 | 60 | 0 | 52 | / | / | 31 | 75 | 59 | 87 | 43 | 101 |
Sedhiou | 8 | 30 | 5 | 33 | / | / | 10 | 35 | 9 | 38 | 10 | 45 |
Diopcounda | 1 | 14 | 0 | 15 | / | / | 4 | 21 | 2 | 25 | 0 | 11 |
Diaroumé | 30 | 60 | 13 | 63 | / | / | 20 | 56 | 27 | 120 | 10 | 126 |
River Basin | Area km² | Annual Rain m3 | Annual Discharge m3 | % Total | Rain Depth mm | Mean Discharge m3 s−1 | KE % |
---|---|---|---|---|---|---|---|
Casamance at Diana Malari 1 | 4710 | 52,987 × 106 | 158,962 × 103 | 7.1 | 1125 | 5.08 | 3 |
Soungrougrou 1 | 4480 | 51,609 × 106 | 51,610 × 103 | 2.3 | 1152 | 1.65 | 1 |
Mid Casamance basin 1 | 4150 | 54,158 × 106 | 216,630 × 103 | 9.7 | 1305 | 6.93 | 4 |
low Casamance basin Right bank 1 | 4323 | 56,631 × 106 | 283,156 × 103 | 12.7 | 1310 | 9.05 | 5 |
low Casamance basin Left bank 1 | 1560 | 23,587 × 106 | 235,872 × 103 | 10.6 | 1512 | 7.54 | 10 |
water body 2 | 927 | 12,857 × 106 | 1,285,749 × 103 | 57.6 | 1387 | 41.1 | 100 |
CASAMANCE BASIN | 20,150 | 251,875 × 106 | 2,231,978 × 103 | 100 | 1250 | 71.4 | 8.9 |
Nema Bah 3 | 50 | 318 × 106 | 2365 × 103 | 0.31 | 637 | 0.075 | 8.2 |
Medina Djikoye 3 | 300 | 2145 × 106 | 10,373 × 103 | 1.38 | 716 | 0.33 | 6 |
Car Car at Tataguine 4 | 1950 | 11,349 × 106 | 5674 × 103 | 0.75 | 582 | 0.18 | 0.5 |
Sine at Fatick 4 | 3600 | 21,348 × 106 | 12,809 × 103 | 1.7 | 593 | 0.41 | 0.6 |
Saloum at Kaolack 4 | 9502 | 61,180 × 106 | 91,770 × 103 | 12.19 | 644 | 2.93 | 1.5 |
Lower basin 4 | 10,710 | 74,984 × 106 | 299,936 × 103 | 39.85 | 700 | 9.59 | 4 |
Water Body 2 | 388 | 3298 × 106 | 329,800 × 103 | 43.82 | 850 | 10.55 | 100 |
SALOUM BASIN | 26,500 | 174,625 × 106 | 752,727 × 103 | 100 | 659 | 24.07 | 4.3 |
Senegal 5 | 337,000 | 2,527,500 × 106 | 20,183,040 × 103 | 751 | 640 | 8.0 | |
Gambia 5 | 60,000 | 612,000 × 106 | 8,675,400 × 103 | 1020 | 275 | 14.2 | |
Geba 6 | 12,440 | 164,208 × 106 | 1,970,496 × 103 | 1320 | 62.5 | 12 | |
Corubal 2 | 26,000 | 445,640 × 106 | 10,249,200 × 103 | 1714 | 325 | 23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descroix, L.; Sané, Y.; Thior, M.; Manga, S.-P.; Ba, B.D.; Mingou, J.; Mendy, V.; Coly, S.; Dièye, A.; Badiane, A.; et al. Inverse Estuaries in West Africa: Evidence of the Rainfall Recovery? Water 2020, 12, 647. https://doi.org/10.3390/w12030647
Descroix L, Sané Y, Thior M, Manga S-P, Ba BD, Mingou J, Mendy V, Coly S, Dièye A, Badiane A, et al. Inverse Estuaries in West Africa: Evidence of the Rainfall Recovery? Water. 2020; 12(3):647. https://doi.org/10.3390/w12030647
Chicago/Turabian StyleDescroix, Luc, Yancouba Sané, Mamadou Thior, Sylvie-Paméla Manga, Boubacar Demba Ba, Joseph Mingou, Victor Mendy, Saloum Coly, Arame Dièye, Alexandre Badiane, and et al. 2020. "Inverse Estuaries in West Africa: Evidence of the Rainfall Recovery?" Water 12, no. 3: 647. https://doi.org/10.3390/w12030647