Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018
Abstract
:1. Introduction
2. Research Area and Methods
2.1. Research Area
2.2. Data Collection
2.3. Methods
2.3.1. Mann-Kendall Non-Parametric Trend Test
2.3.2. Mann-Kendall Non-Parametric Mutation Test
2.3.3. Morlet Wavelet Transform Method
2.3.4. Double Cumulative Curve Method
2.3.5. Spatial Kriging Interpolation Method
3. Results and Discussion
3.1. Annual and Interannual Variation of Runoff
3.2. Temporal Variation of Runoff and Rainfall
3.3. Factors Leading to Runoff Change
3.3.1. Rainfall
3.3.2. Temperature and Evaporation
3.3.3. Land Use Change
4. Conclusions
- In the variation of annual runoff of Mun River during 1980-2018, an abruption occurred in 1999/2000 and since then the variation of annual runoff of Mun River takes an increased trend;
- The variations of rainfall and runoff across the Mun River basin exhibit similar periodic patterns, while the average annual runoff in Period B (during 2000–2018) is significantly larger than in Period A (during 1980–1999) and the average annual rainfall in the basin varies in a consistent trend in the two periods;
- The average, maximum and minimum temperature observed at representative meteorological stations in the upper, middle and lower drain basin vary all in slightly increasing trends, while the average evaporation in Period B reduces slightly;
- The land use types in the Mun River basin vary in very different forms during 1987–2015, with forest area showing a significant decrease, garden area increasing dramatically, farmland area reducing slightly, and the other types (settlement, wetland, grassland, etc.) changing insignificantly during 2000–2015.
- The significant reduction in forest area and slight reductions in evaporation and farmland area since 1999 all help to increase the runoff of Mun River, although the dramatic increase in garden area since 1999 tends to decrease the runoff.
Author Contributions
Funding
Conflicts of Interest
References
- Delgado, J.M.; Apel, H.; Merz, B. Flood trends and variability in the Mekong River. Hydrol. Earth Syst. Sci. 2010, 14, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, I.A. The World’s Water Resources. Available online: http://www.ce.utexas.edu/prof/mckinney/ce385d/papers/shiklomanov.pdf (accessed on 14 March 2020).
- Cai, J.; Varis, O.; Yin, H. China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013. J. Clean. Prod. 2017, 142, 2901–2910. [Google Scholar] [CrossRef]
- Singh, P.; Bengtsson, L. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. J. Hydrol. 2005, 300, 140–154. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geog. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Varis, O.; Vakkilainen, P. China’s 8 challenges to water resources management in the first quarter of the 21st Century. Geomorphology 2001, 41, 93–104. [Google Scholar] [CrossRef]
- Berezovskaya, S.; Yang, D.; Kane, D.L. Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Friedlingstein, P. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43. [Google Scholar] [CrossRef]
- Shi, H.; Hu, C.; Wang, Y.; Liu, C.; Li, H. Analyses of trends and causes for variations in runoff and sediment load of the Yellow River. Int. j. Sediment Res. 2017, 32, 171–179. [Google Scholar] [CrossRef]
- Dai, A.; Qian, T.; Trenberth, K.E.; Milliman, J.D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 2009, 22, 2773–2792. [Google Scholar] [CrossRef]
- Wangpimool, W.; Pongput, K.; Sukvibool, C.; Sombatpanit, S.; Gassman, P.W. The effect of reforestation on stream flow in Upper Nan river basin using Soil and Water Assessment Tool (SWAT) model. Int. Soil Water Conserv. Res. 2003, 1, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Chau, K.W. Predicting standardized streamflow index for hydrological drought using machine learning models. Eng. Appl. Comp. Fluid Mech. 2020, 14, 339–350. [Google Scholar] [CrossRef]
- Homsi, R.; Shiru, M.S.; Shahid, S.; Ismail, T.; Harun, S.B.; Al-Ansari, N.; Yaseen, Z.M. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comp. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- Tian, H.; Yu, G.A.; Tong, L.; Li, R.Z.; Huang, H.Q.; Bridhikitti, A.; Prabamroong, T. Water quality of the Mun River in Thailand— spatiotemporal variations and potential causes. Int. J. Environ. Res. Public Health 2019, 16, 3906. [Google Scholar] [CrossRef] [Green Version]
- Kite, G. Modelling the Mekong: Hydrological simulation for environmental impact studies. J. Hydrol. 2001, 253, 1–13. [Google Scholar] [CrossRef]
- Artlert, K.; Chaleeraktrakoon, C. Modeling and analysis of rainfall processes in the context of climate change for Mekong, Chi, and Mun River Basins (Thailand). J. Hydro-Environ. Res. 2013, 7, 2–17. [Google Scholar] [CrossRef]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Sci. Total Environ. 2018, 621, 108–119. [Google Scholar] [CrossRef]
- Varis, O.; Keskinen, M.; Kummu, M. Mekong at the crossroads. AMBIO 2008, 37, 146–150. [Google Scholar] [CrossRef]
- Toda, O.; Tanji, H.A.J.I.M.E.; Somura, H.I.R.O.A.K.I.; Higuchi, K.A.S.T.U.H.I.R.O.; Yoshida, K.O.S.H.I. Evaluation of tributaries contribution in the Mekong River Basin during rainy and dry season. In Proceedings of the 2nd Asia Pacific Association of Hydrology and Water Resources Conference, Singapore, 5–8 July 2014; 2004; pp. 5–9. [Google Scholar]
- Akter, A.; Babel, M. Hydrological modeling of the Mun River basin in Thailand. J. Hydrol. 2012, 452–453, 232–246. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Liu, Q.; Huang, C.; Li, H.; Wu, C. Distribution characteristics and seasonal variation of soil nutrients in the Mun River Basin, Thailand. Int. J. Environ. Res. Public Health 2018, 15, 1818. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Liu, G.; Liu, Q.; Huang, C.; Li, H. Studies on the spatiotemporal variability of river water quality and its relationships with soil and precipitation: A case study of the Mun River Basin in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2466. [Google Scholar] [CrossRef] [Green Version]
- Hydro and Agro Informatics Institute (HAII) of the Ministry of Science and Technology. Data collection and analysis under the project on developing 25 basins data archive and water extreme simulations: The Mun River Basin, 2012, 74pp. Available online: http://www.thaiwater.net/web/attachments/25basins/05-moon.pdf (accessed on 14 March 2020). (In Thai).
- Snidvongs, A.; Choowaew, S.; Chinvanno, S. Impact of Climate Change on Water and Wetland Resources in Mekong River Basin: Directions for Preparedness and Action; IUCN: Gland, Switzerland, 2003. [Google Scholar]
- Kosa, P.; Kulworawanichpong, T.; Horpibulsuk, S.; Chinkulkijiwat, A.; Srivoramas, R.; Teaumroong, N. Potential micro-hydropower assessment in Mun River Basin, Thailand. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011. [Google Scholar]
- Hirsch, R.; Slack, J. A Nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Bouza-Deaño, R.; Ternero-Rodríguez, M.; Fernández-Espinosa, A. Trend study and assessment of surface water quality in the Ebro River (Spain). J. Hydrol. 2008, 361, 227–239. [Google Scholar] [CrossRef]
- Zhan, C.S.; Jiang, S.S.; Sun, F.B.; Jia, Y.W.; Niu, C.W.; Yue, W.F. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Sys. Sci. 2014, 18, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, C.; Xu, C.; Xu, Y.; Jiang, T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J. Hydrol. 2006, 324, 255–265. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Robson, A. Change detection in hydrological records—a review of the methodology. Hydrol. Sci. J. 2004, 49, 7–19. [Google Scholar] [CrossRef]
- Holdaway, M.R. Spatial modeling and interpolation of monthly temperature using Kriging. Clim. Res. 1996, 6, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Lafreniere, M.; Sharp, M. Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta. Hydrol. Process. 2003, 17, 1093–1118. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.; He, J.; Zhang, Y.; Li, X.; Edmunds, W.M. Trends and periodicities in observed temperature, precipitation and runoff in a desert catchment: Case study for the Shiyang River Basin in Northwestern China. Water Environ. J. 2013, 27, 86–98. [Google Scholar] [CrossRef]
- Fiedler, F.R. Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J. Hydrol. Eng. 2003, 8, 219–221. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. 2nd impression. In Charles Griffin and Company Ltd. London and High. Wycombe; Griffin: London, UK, 1975. [Google Scholar]
- Noszczyk, T.; Rutkowska, A.; Hernik, J. Determining changes in land use structure in Małopolska using statistical methods. Polish J. Environ. Stud. 2017, 26, 211–220. [Google Scholar] [CrossRef]
- Yanming, Z.; Jun, W.; Xinhua, W. Study on the change trend of precipitation and temperature in Kunming city based on Mann-Kendall analysis. In Future Computer, Communication, Control and Automation; Springer: Heidelberg, Germany, 2012; pp. 505–513. [Google Scholar]
- Tang, X.L.; Li, J.F.; Lv, X.; Long, H.L. Analysis of the characteristics of runoff in the Manasi River Basin in the past 50 years. Procedia Environ. Sci. 2012, 13, 1354–1362. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Complex Morlet wavelet amplitude and phase map based bearing fault diagnosis. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010. [Google Scholar]
- Long, C.J.; Datta, S. Wavelet based feature extraction for phoneme recognition. In Proceeding of the Fourth International Conference on Spoken Language Processing. ICSLP’96, Philadelphia, PA, USA, 3–6 October 1996; Volume 1, pp. 264–267. [Google Scholar]
- Nason, G.P.; Sachs, R.V. Wavelets in time-series analysis. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 357, 2511–2526. [Google Scholar] [CrossRef]
- Smith, L.C.; Turcotte, D.L.; Isacks, B.L. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process. 1998, 12, 233–249. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H.; Langbein, W.B. Double-Mass Curves, with a Section Fitting Curves to Cyclic Data; US Government Printing Office: Washington, DC, USA, 1960; pp. 31–66.
- Mu, X.M.; Zhang, X.Q.; Gao, P.; Wang, F. Theory of double mass curves and its applications in hydrology and meteorology. J. China Hydrol. 2010, 30, 47–51. [Google Scholar]
- Hattermann, F.F.; Post, J.; Conradt, T.; Wechsung, F. Assessment of water availability in a Central-European River Basin (Elbe) under climate change. Adv. Clim. Change Res. 2008, 4, 42–50. [Google Scholar]
- Keblouti, M.; Ouerdachi, L.; Boutaghane, H. Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Energy Procedia 2012, 18, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Azpurua, M.A.; Ramos, K.D. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog. Electromagn. Res. 2010, 14, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Wilk, J.; Kniveton, D.; Andersson, L.; Layberry, R.; Todd, M.C.; Hughes, D.; Vanderpost, C. Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. J. Hydrol. 2006, 331, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Gheewala, S.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.; Chaiyawannakarn, N. Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water 2014, 6, 1698–1718. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chen, L.; Fu, B.; Huang, Z.; Wu, D.; Gui, L. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J. Hydrol. 2007, 335, 247–258. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manage. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Pei, L.I. The progress and enlightenment of Thailand urbanization. Urban Problems 2007, 6. [Google Scholar]
Data Type | Criterion | Duration | Site | Source |
---|---|---|---|---|
Spatial data DEM | ASTER GDEMV2 Scale: 1:100,000 | Geospatial Data Cloud http://www.gscloud.cn/ | ||
Basin boundary | Vector format | Mahasarakan University | ||
Land use | Raster format | 1987–2018 | Servir Mekong website https://servir.adpc.net/ | |
Hydro-meteorological data | Daily | |||
Rainfall | Daily | 1960–2015 | 159 stations | R.I.D |
Temperature | Daily | 1980–2014 | 3 stations | GSOD |
Evaporation | Daily | 1980–2015 | 13stations | R.I.D |
Runoff | Monthly | 1980–2018 | 2 stations | R.I.D |
Station | Z(1980–1999) | Z(2000–2018) | Cv | |
---|---|---|---|---|
CH | 2.06* | −0.62 | 0.3 | 0.4 |
UB | 0.27 | −2.36** | 1.13 | 0.6 |
Runoff-Rainfall | Reach | Time Scale | ||
---|---|---|---|---|
Long (16–30a) | Middle (10–15a) | Short (<10a) | ||
Runoff | Upper and middle | 15 | 11 | 6 |
Middle and lower | 15 | 11 | 5 | |
Rainfall | Upper | 17 | 8-10 | 5 |
Middle | 14 | 8-10 | 5 | |
Lower | 16 | 8-10 | 5 |
Station | Period | Curve Slope Value | Compared to Period A | ||
---|---|---|---|---|---|
Slope Variation | Rate | ||||
Rainfall-runoff | UBON | A(1980–1999) | 0.013 | ||
B(2000–2015) | 0.017 | 0.004 | 30.7% | ||
Runoff | UBON | A(1980–1999) | 17.212 | ||
B(2000–2015) | 21.181 | 3.969 | 23.1% | ||
Rainfall | Phi Mai Barrage | A(1980–1999) | 1568.2 | ||
B(2000–2015) | 1757.2 | 189 | 12.1% | ||
Mun River | A(1980–1999) | 1135.8 | |||
B(2000–2015) | 1133.2 | −2.6 | -0.2% | ||
Regional R.I.D | A(1980–1999) | 1065.4 | |||
B(2000–2015) | 1131.0 | 65.6 | 6.2% |
Land-Use Type | 1987 (km2) | 2000 (km2) | 2015 (km2) | 1987–2000 (%) | 2000–2015 (%) | 2015–2018 (%) |
---|---|---|---|---|---|---|
Forest | 13,246.37 | 7965.03 | 6042.71 | −39.87 | −24.13 | −3.08 |
Wetland | 960.28 | 1074.6 | 1078.01 | 11.91 | 0.32 | 2.78 |
Settlement | 252.30 | 389.25 | 436.50 | 54.28 | 12.14 | −11.51 |
Garden | 564.70 | 1329.94 | 3452.68 | 135.51 | 159.61 | 22.05 |
Farmland | 44,089.32 | 48,409.13 | 48,139.00 | 9.80 | −0.56 | −1.19 |
Grassland | 0.003 | 1.37 | 7.37 | 45,666 | 437.96 | 24.17 |
Others | 96.60 | 40.25 | 53.30 | −58.33 | 32.42 | 16.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Huang, H.; Yu, G.; Yu, H.; Bridhikitti, A.; Su, T. Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018. Water 2020, 12, 831. https://doi.org/10.3390/w12030831
Li R, Huang H, Yu G, Yu H, Bridhikitti A, Su T. Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018. Water. 2020; 12(3):831. https://doi.org/10.3390/w12030831
Chicago/Turabian StyleLi, Renzhi, Heqing Huang, Guoan Yu, Hong Yu, Arika Bridhikitti, and Teng Su. 2020. "Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018" Water 12, no. 3: 831. https://doi.org/10.3390/w12030831