Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. MBBR Effluent
2.3. Ozone Setup
2.4. Fluorescence and MicroTox®
2.4.1. Fluorescence
2.4.2. MicroTox® Test
2.5. Quantification
2.5.1. Determination of Delivered Ozone Dosage
2.5.2. Pharmaceuticals Analysis
2.6. Experiments Performed
2.7. Data Treatment
3. Results and Discussion
3.1. Pharmaceuticals Removal
3.2. Natural Fluorescence Used for Estimating Delivered Ozone Dosage
3.2.1. Comparison of Fluorescence Results
3.2.2. Correlation of Fluorescence Intensity and Pharmaceutical Concentration
3.3. Toxicity Development with Treatment
3.3.1. Development of MicroTox® with Staged Biological Treatment
3.3.2. Development of Toxicity Inhibition in Ozonated Effluent Followed with Polishing Biofilm
3.4. Fluorescence Intensity in the Ozonated Effluent Polished by MBBR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Fernández-López, C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain. Chem. Eng. J. 2017, 316, 332–340. [Google Scholar] [CrossRef]
- Yang, Y.; Sik, Y.; Kim, K.; Kwon, E.E.; Fai, Y. Science of the Total Environment Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Bioresource Technology Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lam, J.C.W.; Li, W.; Yu, H.; Lam, P.K.S. Science of the Total Environment Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. Sci. Total Environ. 2017, 586, 1162–1169. [Google Scholar] [CrossRef]
- Mccallum, E.S.; Krutzelmann, E.; Brodin, T.; Fick, J.; Sundelin, A.; Balshine, S.; Harbour, H. Science of the Total Environment Exposure to wastewater ef fl uent affects fi sh behaviour and tissue-speci fi c uptake of pharmaceuticals. Sci. Total Environ. 2017, 606, 578–588. [Google Scholar] [CrossRef]
- Hapeshi, E.; Lambrianides, A.; Koutsoftas, P.; Kastanos, E.; Michael, C.; Fatta-Kassinos, D. Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban wastewater. Environ. Sci. Pollut. Res. 2013, 20, 3592–3606. [Google Scholar] [CrossRef]
- Falås, P.; Longrée, P.; la Cour Jansen, J.; Siegrist, H.; Hollender, J.; Joss, A. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Res. 2013, 47, 4498–4506. [Google Scholar] [CrossRef]
- Falås, P.; Baillon-Dhumez, A.; Andersen, H.R.; Ledin, A.; la Cour Jansen, J. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Res. 2012, 46, 1167–1175. [Google Scholar] [CrossRef]
- Tang, K.; Ooi, G.T.H.; Litty, K.; Sundmark, K.; Kaarsholm, K.M.S.; Sund, C.; Kragelund, C.; Christensson, M.; Bester, K.; Andersen, H.R. Bioresource Technology Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor ( MBBR ) with intermittent feeding. Bioresour. Technol. 2017, 236, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, G.T.H.; Tang, K.; Chhetri, R.K.; Kaarsholm, K.M.S.; Sundmark, K.; Kragelund, C.; Litty, K.; Christensen, A.; Lindholst, S.; Sund, C.; et al. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresour. Technol. 2018, 267, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Escolà Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR). Water Res. 2015, 83, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Escolà Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas). Sci. Total Environ. 2015, 530–531, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, F.C.; Soler, J.; Alpendurada, M.F.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes. Water Res. 2016, 105, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-bret, C. Science of the Total Environment Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fl uidized bed as tertiary treatment at large pilot scale. Sci. Total Environ. 2016, 542, 983–996. [Google Scholar] [CrossRef] [Green Version]
- Rattier, M.; Reungoat, J.; Keller, J.; Gernjak, W. Removal of micropollutants during tertiary wastewater treatment by biofiltration: Role of nitrifiers and removal mechanisms. Water Res. 2014, 54, 89–99. [Google Scholar] [CrossRef]
- Bui, X.T.; Vo, T.P.T.; Ngo, H.H.; Guo, W.S.; Nguyen, T.T. Science of the Total Environment Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ. 2016, 564, 1050–1067. [Google Scholar] [CrossRef]
- Hansen, K.M.S.; Spiliotopoulou, A.; Chhetri, R.K.; Escolà Casas, M.; Bester, K.; Andersen, H.R. Ozonation for source treatment of pharmaceuticals in hospital wastewater—Ozone lifetime and required ozone dose. Chem. Eng. J. 2016, 290, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H. Toxicity of Organic Chemical Pollution in Groundwater Downgradient of a Landfill (Grindsted, Denmark ). Environ. Sci. Technol. 2000, 1647–1652. [Google Scholar] [CrossRef]
- Mišík, M.; Knasmueller, S.; Ferk, F.; Cichna-Markl, M.; Grummt, T.; Schaar, H.; Kreuzinger, N. Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater. Water Res. 2011, 45, 3681–3691. [Google Scholar] [CrossRef] [PubMed]
- Anumol, T.; Sgroi, M.; Park, M.; Roccaro, P.; Snyder, S.A. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates. Water Res. 2015, 76, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Anumol, T.; Daniels, K.D.; Wu, S.; Ziska, A.D.; Snyder, S.A. Predicting trace organic compound attenuation by ozone oxidation: Development of indicator and surrogate models. Water Res. 2017, 119, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chys, M.; Audenaert, W.T.M.; Vangrinsven, J.; Bauwens, M.; Mortier, S.T.F.C.; Van Langenhove, H.; Nopens, I.; Demeestere, K.; Van Hulle, S.W.H. Dynamic validation of online applied and surrogate-based models for tertiary ozonation on pilot-scale. Chemosphere 2018, 196, 494–501. [Google Scholar] [CrossRef]
- Tang, K.; Spiliotopoulou, A.; Chhetri, R.K.; Ooi, G.T.H.; Kaarsholm, K.M.S.; Sundmark, K.; Florian, B.; Kragelund, C.; Bester, K.; Andersen, H.R. Removal of pharmaceuticals, toxicity and natural fluorescence through the ozonation of biologically-treated hospital wastewater, with further polishing via a suspended biofilm. Chem. Eng. J. 2019, 359, 321–330. [Google Scholar] [CrossRef]
- Spiliotopoulou, A.; Martin, R.; Pedersen, L.; Andersen, H.R. Use of fl uorescence spectroscopy to control ozone dosage in recirculating aquaculture systems. Water Res. 2017, 111, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Libralato, G.; Ghirardini Annamaria, V.; Francesco, A. How toxic is toxic? A proposal for wastewater toxicity hazard assessment. Ecotoxicol. Environ. Saf. 2010, 73, 1602–1611. [Google Scholar] [CrossRef]
- Bader, H.; Hoigne, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Hansen, K.M.S.; Andersen, H.R.; Ledin, A. Ozonation of estrogenic chemicals in biologically treated sewage. Water Sci. Technol. 2010, 62, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, M.G.; Hey, G.; Rodríguez Vega, S.; Spiliotopoulou, A.; Fick, J.; Tysklind, M.; la Cour Jansen, J.; Andersen, H.R. Required ozone doses for removing pharmaceuticals from wastewater effluents. Sci. Total Environ. 2013, 456–457, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakaran, S.; Amy, G.L. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Water Res. 2013, 47, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Blaney, L. Ozone Treatment of Antibiotics in Water. In Water Reclamation and Sustainability; Elsevier: Amsterdam, The Netherlands, 2014; pp. 265–316. ISBN 9780124165762. [Google Scholar]
- Lee, Y.; Kovalova, L.; McArdell, C.S.; von Gunten, U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res. 2014, 64, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S. Elimination of Micropollutants during Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908. [Google Scholar] [CrossRef] [Green Version]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; McArdell, C.S.; Ort, C.; Singer, H.; von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef]
- Lee, Y.; Gerrity, D.; Lee, M.; Bogeat, A.E.; Salhi, E.; Gamage, S.; Trenholm, R.A.; Wert, E.C.; Snyder, S.A.; von Gunten, U. Prediction of Micropollutant Elimination during Ozonation of Municipal Wastewater Effluents: Use of Kinetic and Water Specific Information. Environ. Sci. Technol. 2013, 47, 5872–5881. [Google Scholar] [CrossRef]
- Świetlik, J.; Sikorska, E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Res. 2004, 38, 3791–3799. [Google Scholar] [CrossRef]
- Uyguner, C.S.; Bekbolet, M. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy. Catal. Today 2005, 101, 267–274. [Google Scholar] [CrossRef]
- Wittmer, A.; Heisele, A.; McArdell, C.S.; Böhler, M.; Longree, P.; Siegrist, H. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone. Water Sci. Technol. 2015, 71, 980–985. [Google Scholar] [CrossRef]
Fluorophore Type | Fluorophore Name [27] | Excitation/Emission Wavelength (nm) |
---|---|---|
Protein-like (Tyrosine) | B | 231/315 |
Protein-like (Tryptophan) | T2 | 231/360 |
Humic-like | A | 249/450 |
Protein-like (Tyrosine) | B | 275/310 |
Protein-like (Tryptophan) | T1 | 275/340 |
Humic-like | C | 335/450 |
Type | Pharmaceuticals | Fluorescence | Toxicity | ||||
---|---|---|---|---|---|---|---|
Pilot | Laboratory | Pilot | Laboratory | Pilot | Laboratory | ||
Exp 1 | MBBR effluent was treated by pilot-scale ozonation via six dosages of ozone, and ozonated effluents were further treated by a pilot-scale polishing MBBR | + | + | + | |||
Exp 2 | MBBR effluent was treated by one dosage of ozone with one week of continuous operation in the pilot. Three delivered ozone dosages were conducted. | + | |||||
Exp 3 | Laboratory-scale ozonation with eight dosages of ozone | + | + | + | |||
Exp 4 | Flow through of the pilot-scale staged MBBRs treatment train | + | |||||
Exp 5 | Laboratory-scale ozonation with four delivered ozone dosages, followed with or without a laboratory-scale polishing MBBR | + | + |
Compound | DDO3 | Z90 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pilot | R2 | Lab | R2 | Pilot | Lab | A | B | C | D | E | |
Atenolol | <LOQa | 44 ± 18c | 0.51 | 1.4 ± 0.6 | 1.1 | 0.6 | 0.5 | ||||
Carbamazepine | 6.3 ± 1.9 | 0.85 | N/A | 0.20 ± 0.06 | N/A | 0.61 | 0.58 | 0.6 | 0.6 | 0.25 | |
Citalopram | 3.1 ± 0.4 | 0.96 | 18 ± 4.8 | 0.76 | 0.10 ± 0.01 | 0.55 ± 0.15 | |||||
Clarithromycin | 35 ± 15 | 0.55 | 13 ± 1.8 | 0.94 | 1.1 ± 0.5 | 0.39 ± 0.06 | 0.75 | 0.6 | 0.6 | ||
Diatrizoic acid | N/A | No fitb | 0.07 | N/A | 4.7 | ||||||
Diclofenac | 1.1 ± 0.1 | 1.00 | 9.0 ± 0.7 | 0.97 | 0.03 ± 0.00 | 0.28 ± 0.02 | |||||
Iohexol | 226 ± 82 | 0.61 | 95 ± 18 | 0.83 | 7.1 ± 2.6 | 3.0 ± 0.6 | 1.8 | ||||
Iomeprol | 18 ± 2.5 | 0.96 | 56 ± 16 | 0.68 | 0.57 ± 0.08 | 1.8 ± 0.5 | 1.8 | 1.9 | |||
Iopamidol | No fit | 0.01 | 55 ± 10 | 0.69 | 1.6 ± 0.3 | 1.9 | 1.8 | ||||
Iopromide | <LOQ | No fit | No fit | 2.6 | |||||||
Metoprolol | 8.1 ± 0.8 | 0.99 | 27 ± 3.7 | 0.94 | 0.25 ± 0.02 | 0.86 ± 0.12 | 1 | 0.89 | 0.6 | 0.6 | |
Sulfadiazine | <LOQ | 60 ± 11 | 0.72 | 1.9 ± 0.3 | 0.5 | ||||||
Sulfamethizole | 11 ± 3.3 | 0.83 | 38 ± 8.5 | 0.82 | 0.35 ± 0.1 | 1.2 ± 0.3 | 0.77 | 0.52 | |||
Sulfamethoxazole | No fit | 0.37 | No fit | 0.44 | 0.52 | 0.6 | 0.6 | 0.5 | |||
Trimethoprim | <LOQ | 14 ± 1.8 | 0.88 | 0.43 ± 0.06 | 0.55 | 0.55 | 0.6 | 0.25 | |||
Venlafaxine | 7.9 ± 0.7 | 0.98 | 20 ± 2 | 0.93 | 0.25 ± 0.02 | 0.62 ± 0.06 | 0.91 | 1.4 | 0.6 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Ooi, G.T.H.; Spiliotopoulou, A.; Kaarsholm, K.M.S.; Sundmark, K.; Florian, B.; Kragelund, C.; Bester, K.; Andersen, H.R. Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors. Water 2020, 12, 1059. https://doi.org/10.3390/w12041059
Tang K, Ooi GTH, Spiliotopoulou A, Kaarsholm KMS, Sundmark K, Florian B, Kragelund C, Bester K, Andersen HR. Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors. Water. 2020; 12(4):1059. https://doi.org/10.3390/w12041059
Chicago/Turabian StyleTang, Kai, Gordon T. H. Ooi, Aikaterini Spiliotopoulou, Kamilla M. S. Kaarsholm, Kim Sundmark, Bianca Florian, Caroline Kragelund, Kai Bester, and Henrik R. Andersen. 2020. "Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors" Water 12, no. 4: 1059. https://doi.org/10.3390/w12041059
APA StyleTang, K., Ooi, G. T. H., Spiliotopoulou, A., Kaarsholm, K. M. S., Sundmark, K., Florian, B., Kragelund, C., Bester, K., & Andersen, H. R. (2020). Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors. Water, 12(4), 1059. https://doi.org/10.3390/w12041059