Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor
Abstract
:1. Introduction
2. Formulation of the Problem
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
cylinder twist, linear, and strain rate | |
radius of cylinder | |
magnetic field intensity (kg/s2 A) | |
skin friction coefficient | |
specific heat (J/kg K) | |
gravity acceleration (m s−2) | |
Grashof number | |
mean absorption coefficient | |
thermal conductivity of the hybrid nanofluid (W m−1 K−1) | |
thermal conductivity of the nanofluid (W m−1 K−1) | |
thermal conductivity of nanoparticles (W m−1 K−1) | |
Hartmann number | |
shape factor | |
Nusselt number | |
Prandtl number | |
the pressure | |
radiative heat flux | |
radiation parameter | |
local Reynolds number | |
free stream Reynolds number | |
temperature (K) | |
free-stream temperature (K) | |
wall temperature (K) | |
velocity components (m s−1) | |
Cartesian coordinates (m) | |
Greek symbols | |
velocity ratio parameter | |
hybrid nanofluid thermal expansion (K−1) | |
base fluid thermal expansion (K−1) | |
nanoparticle thermal expansion (K−1) | |
mixed convective parameter | |
hybrid nanofluid dynamic viscosity (kg m s−1) | |
base fluid dynamic viscosity (kg m s−1) | |
volume fraction of nanoparticles | |
dimensionless temperature | |
kinematic viscosity of hybrid nanofluid (m2 s−1) | |
hybrid nanofluid density (kg m−3) | |
nanoparticles density (kg m−3) | |
density of base fluid (kg m−3) | |
heat capacity of the hybrid nanofluids | |
Stefan Boltzmann constant | |
electrical conductivity of hybrid nanofluid (s/m) | |
stream function | |
similarity variable | |
Subscripts | |
condition at free stream | |
solid nanoparticles | |
nanofluid | |
hybrid nanofluid | |
wall boundary condition | |
free-stream condition | |
Superscripts | |
‘ | derivative w.r.t. |
References
- Jana, S.; Salehi-Khojin, A.; Zhong, W.H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta. 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Resent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, K.; Ganji, D.D. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017, 322, 428–438. [Google Scholar] [CrossRef]
- Kalidasan, K.; Kanna, P.R. Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond-cobalt oxide/water. Int. Commun. Heat Mass Transf. 2017, 81, 64–71. [Google Scholar] [CrossRef]
- Iqbal, Z.; Maraj, E.N.; Azhar, E.; Mehmood, Z. A novel development of hybrid (MoS2−SiO2/ H2O) nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J. Taiwan Inst. Chem. Eng. 2017, 81, 150–158. [Google Scholar] [CrossRef]
- Usman, M.; Hamid, M.; Zubair, T.; Haq, R.U.; Wang, W. Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 2018, 126, 1347–1356. [Google Scholar] [CrossRef]
- Manjunatha, S.; Kuttan, B.A.; Jayanthi, S.; Chamkha, A.; Gireesha, B.J. Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon 2019, 5, e01469. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; He, Y.; Hu, Y.; Wang, X. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Conver. Manag. 2018, 177, 249–257. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Y.; He, Y. Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Appl. Thermal Eng. 2019, 162, 114220. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, U. An enhancement in thermal performance of partially ionized fluid due to hybrid nano-structures exposed to magnetic field. AIP Adv. 2019, 9, 085024. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Hu, Y.; He, Y. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy 2020, 71, 104582. [Google Scholar] [CrossRef]
- Khan, M.; Hashim, A. A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreaunanofluids. Int. J. Heat Mass Transf. 2016, 103, 291–297. [Google Scholar]
- Zaib, A.; Rashidi, M.M.; Chamkha, A.J.; Bhattacharyya, K. Numerical solution of second law analysis for MHD Cassonnanofluid past a wedge with activation energy and binary chemical reaction. Int. J. Num. Meth. Heat Fluid Flow 2017, 27, 2816–2834. [Google Scholar]
- Raza, J.; Mebarek-Oudina, F.; Mahanthesh, B. Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscip. Mod. Mat. Struct. 2019, 15, 871–894. [Google Scholar] [CrossRef]
- Shateyi, S.; Tendayi, G. Numerical analysis of unsteady MHD flow near a stagnation point of a two-dimensional porous body with heat and mass transfer, thermal radiation, chemical reaction. Boundary Val. Prob. 2014, 5, 218. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Muhammad, T.; Qayyum, A.; Alseadi, A.; Mustafa, M. On squeezing flow of nanofluid in the presence of magnetic field effects. J. Mol. Liq. 2016, 213, 179–185. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, L.; Zhang, X.; Ma, L.; Chen, G. MHD pseudo-plastic nanofluid unsteady flow and heat transfer on the finite thin film on a stretching surface internal heat generation. Int. J. Heat Mass Transf. 2015, 84, 903–911. [Google Scholar] [CrossRef]
- Haq, R.; Nadeem, S.; Khan, Z.H.; Noor, N. MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E 2015, 73, 45–53. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Khan, I.; Nisar, K.S. Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual Solutions. J. Mater. Res. Technol. 2020, 9, 188–199. [Google Scholar] [CrossRef]
- Gorla, R.S.R. Mixed convection in an axisymmetric stagnation point flow on a vertical cylinder. Acta Mech. 1993, 99, 113–123. [Google Scholar] [CrossRef]
- Khashiie, N.S.; Arifin, N.M.; Nazar, R.; Hafizuddin, E.H.; Wahi, N.; Pop, I. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chin. J. Phys. 2020, 64, 251–263. [Google Scholar] [CrossRef]
- Fang, T.; Zhang, J.; Zhong, Y.; Tao, H. Unsteady viscous flow over an expanding stretching cylinder. Chin. Phys. Lett. 2011, 12, 124707. [Google Scholar] [CrossRef]
- Hamid, A.; Hashim; Alghamdi, M.; Khan, M.; Alshomrani, A.S. An investigation of thermal and solutal stratification effects on mixed convection flow and heat transfer of Williamson nanofluid. J. Mol. Liq. 2019, 284, 307–315. [Google Scholar] [CrossRef]
Properties | Nanofluid | Hybrid Nanofluid |
---|---|---|
Density | ||
Viscosity | ||
Thermal expansion | ||
Electrical conductivity | ||
Thermal conductivity | ||
Heat capacity |
Characteristic Properties | H2O | MoS2 | GO |
---|---|---|---|
997.1 | 5060 | 1800 | |
4179 | 397.21 | 717 | |
0.613 | 904.4 | 5000 | |
0.005 | |||
21 | |||
Pr | 6.2 | - | - |
Nanoparticle Type | Shape | Shape Factor |
---|---|---|
Bricks | 3.7 | |
Cylinders | 4.9 | |
Platelets | 5.7 | |
Blades | 8.6 |
Quantities | 3.7 | 4.9 | 5.7 | 8.6 | |||||
---|---|---|---|---|---|---|---|---|---|
Nano | Hybrid | Nano | Hybrid | Nano | Hybrid | Nano | Hybrid | ||
0.01 | 1.1091 | 2.1922 | 1.1116 | 2.1969 | 1.1133 | 2.2000 | 1.1192 | 2.2111 | |
0.012 | 1.3190 | 2.3913 | 1.3225 | 2.3974 | 1.3248 | 2.4014 | 1.3331 | 2.4157 | |
0.014 | 1.5269 | 2.5892 | 1.5316 | 2.5968 | 1.5347 | 2.6018 | 1.5457 | 2.6197 | |
0.01 | 2.8222 | 2.9181 | 2.8462 | 2.9433 | 2.8622 | 2.9601 | 2.9195 | 3.0202 | |
0.012 | 2.8546 | 2.9480 | 2.8837 | 2.9784 | 2.9030 | 2.9986 | 2.9722 | 3.0710 | |
0.014 | 2.8866 | 2.9775 | 2.9208 | 3.0132 | 2.9435 | 3.0369 | 3.0246 | 3.1217 |
Quantities | 3.7 | 4.9 | 5.7 | 8.6 | |||||
---|---|---|---|---|---|---|---|---|---|
Nano | hybrid | Nano | hybrid | Nano | hybrid | Nano | hybrid | ||
0.0 | 1.1380 | 2.2426 | 1.1407 | 2.2475 | 1.1424 | 2.2508 | 1.1486 | 2.2624 | |
0.5 | 1.1091 | 2.1922 | 1.1116 | 2.1969 | 1.1133 | 2.2000 | 1.1192 | 2.2111 | |
1.0 | 1.0832 | 2.1464 | 1.0856 | 2.1509 | 1.0871 | 2.1539 | 1.0928 | 2.1645 | |
0.0 | 2.8267 | 2.9253 | 2.8508 | 2.9507 | 2.8668 | 2.9675 | 2.9243 | 3.0279 | |
0.5 | 2.8222 | 2.9181 | 2.8462 | 2.9433 | 2.8622 | 2.9601 | 2.9195 | 3.0202 | |
1.0 | 2.8181 | 2.9115 | 2.8421 | 2.9367 | 2.8581 | 2.9534 | 2.9152 | 3.0133 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.-M.; Nisar, K.S.; Khan, U.; Daei Kasmaei, H.; Malaver, M.; Zaib, A.; Khan, I. Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor. Water 2020, 12, 1723. https://doi.org/10.3390/w12061723
Chu Y-M, Nisar KS, Khan U, Daei Kasmaei H, Malaver M, Zaib A, Khan I. Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor. Water. 2020; 12(6):1723. https://doi.org/10.3390/w12061723
Chicago/Turabian StyleChu, Yu-Ming, Kottakkaran Sooppy Nisar, Umair Khan, Hamed Daei Kasmaei, Manuel Malaver, Aurang Zaib, and Ilyas Khan. 2020. "Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor" Water 12, no. 6: 1723. https://doi.org/10.3390/w12061723
APA StyleChu, Y. -M., Nisar, K. S., Khan, U., Daei Kasmaei, H., Malaver, M., Zaib, A., & Khan, I. (2020). Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor. Water, 12(6), 1723. https://doi.org/10.3390/w12061723