Effect of Plant Morphological Traits on Throughfall, Soil Moisture, and Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Plant Morphology Quantification
2.3. Soil Properties Investigation
2.4. Hydrological Response Measurement
3. Results
3.1. Soil Properties and Plant Morphology
3.2. Thresholds of Throughfall Occurrence
3.3. Rainfall Thresholds for Runoff Generation
3.4. Response of Soil Moisture Dynamics
4. Discussion
4.1. Effect of Plant Morphology on Ecohydrological Behavior
4.2. Implication for Regional Revegetation and the Ecohydrological Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, M.B.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507–1511. [Google Scholar] [CrossRef]
- Wan, S.M.; Jia, Z.K.; Han, Q.F. Dry soil layer forming and soil moisture restoration of alfalfa grassland in the semi-humid region of the Loess Plateau. J. Nat. Resour. 2008, 23, 383–390. [Google Scholar]
- Xu, X.-L.; Ma, K.-M.; Fu, B.-J.; Liu, W.; Song, C.-J. Soil and water erosion under different plant species in a semiarid river valley, SW China: The effects of plant morphology. Ecol Res. 2009, 24, 37–46. [Google Scholar] [CrossRef]
- Allen, S.T.; Aubrey, D.P.; Bader, M.Y.; Coenders-Gerrits, M.; Friesen, J.; Gutmann, E.D.; Guillemette, F.; Jiménez-Rodríguez, C.; Keim, R.F.; Klamerus-Iwan, A.; et al. Key Questions on the Evaporation and Transport of Intercepted Precipitation. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I.I.J.T., Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 269–280. [Google Scholar] [CrossRef]
- Bassette, C.; Bussière, F. Partitioning of splash and storage during raindrop impacts on banana leaves. Agric. For. Meteorol. 2008, 148, 991–1004. [Google Scholar] [CrossRef]
- Charlier, J.B.; Moussa, R.; Cattan, P.; Cabidoche, Y.M.; Voltz, M. Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: Application to stemflow of banana (Musa spp.) plant. Hydrol. Earth Syst. Sci. 2009, 13, 2151–2168. [Google Scholar] [CrossRef]
- Aranda, I.; Forner, A.; Cuesta, B.; Valladares, F. Species-specific water use by forest tree species: From the tree to the stand. Agric. Water Manag. 2012, 114, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-H.; Duan, C.-Q. How do plant morphological characteristics, species composition and richness regulate eco-hydrological function? J. Integr. Plant Biol. 2010, 52, 1086–1099. [Google Scholar] [CrossRef]
- Holder, C.D. The relationship between leaf water repellency and leaf traits in three distinct biogeographical regions. Plant Ecol. 2011, 212, 1913. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Holder, C.D. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 2013, 6, 483–490. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Witek, W. Variability in the wettability and water storage capacity of Common Oak Leaves (Quercus robur L.). Water 2018, 10, 695. [Google Scholar] [CrossRef] [Green Version]
- Klamerus-Iwan, A.; Błońska, E. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes. J. Hydrol. 2018, 559, 534–540. [Google Scholar] [CrossRef]
- Frasson, R.P.D.M.; Krajewski, W.F. Characterization of the drop-size distribution and velocity–diameter relation of the throughfall under the maize canopy. Agric. For. Meteorol. 2011, 151, 1244–1251. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Vegetative-based technologies for erosion control. In Eco- and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, Proceedings of the First International Conference on Eco-Engineering, Thessaloniki, Greece, 13–17 September 2004; Stokes, A., Spanos, I., Norris, J.E., Cammeraat, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 103, pp. 265–272. [Google Scholar]
- Cao, S.X.; Chen, L.; Yu, X.X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Li, Y.; Poesen, J.; Yang, J.C.; Fu, B.; Zhang, J.H. Evaluating gully erosion using Cs-137 and Pb-210/Cs-137 ratio in a reservoir catchment. Soil Tillage Res. 2003, 69, 107–115. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B.; Lü, Y.; Wang, Z.; Gao, G. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China. Geomorphology 2012, 138, 404–414. [Google Scholar] [CrossRef]
- Bogaert, J.; Myneni, R.B.; Knyazikhin, Y. A mathematical comment on the formulae for the aggregation index and the shape index. Landsc. Ecol. 2002, 17, 87–90. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Heidelberg, Germany, 2006; p. 993. [Google Scholar]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Dunjό, G.; Pardini, G.; Gispert, M. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J. Arid Env. 2004, 57, 239–256. [Google Scholar] [CrossRef]
- Bochet, E.; Poesen, J.; Rubio, J.L. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: Influence of plant morphology and rainfall intensity. Earth Surf. Proc. Land 2006, 31, 536–549. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Song, X.Y.; Zhang, S.H.; Liu, X.Z.; Liang, Y.L.; Zheng, S.Q. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China. Hydrol. Process. 2001, 15, 977–988. [Google Scholar] [CrossRef]
- Nanko, K.; Hotta, N.; Suzuki, M. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J. Hydrol. 2006, 329, 422–431. [Google Scholar] [CrossRef]
- Geißler, C.; Nadrowski, K.; Kühn, P.; Baruffol, M.; Bruelheide, H.; Schmid, B.; Scholten, T. Kinetic energy of throughfall in subtropical forests of SE China—effects of tree canopy structure, functional traits, and biodiversity. PLoS ONE 2012, 8, e49618. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 2006, 319, 72–82. [Google Scholar] [CrossRef]
- Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso. Soil Tillage Res. 2005, 83, 194–203. [Google Scholar] [CrossRef]
- Calvo-Cases, A.; Boix-Fayos, C.; Imeson, A.C. Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology 2003, 50, 269–291. [Google Scholar] [CrossRef]
- Han, R.; Liang, Z.; Zou, H. Water consumption properties of adaptable nursery stocks on Loess plateau. Chin. J. Appl. Ecol. 1994, 5, 210–213. [Google Scholar]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.a.; Zhu, Y.; Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Wang, L.; Shao, M.A.; Wang, Q.J.; Jia, Z.K. Comparison of Soil Desiccations in Natural and Acacia Forests in the Ziwuling Mountain of the Loess Plateau. Acta Bot. Boreali-Occident. Sin. 2005, 27, 333–337. [Google Scholar]
- Jin, T.T.; Fu, B.J.; Liu, G.H.; Wang, Z. Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China. Hydrol. Earth Syst. Sci. 2011, 15, 2519–2530. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Huang, M.; Gallichand, J.; Shao, M. Optimization of plant coverage in relation to water balance in the Loess Plateau of China. Geoderma 2012, 173–174, 134–144. [Google Scholar] [CrossRef]
- Mu, X.M.; Zhang, L.; McVicar, T.R.; Chille, B.S.; Gau, P. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol. Process. 2007, 21, 2124–2134. [Google Scholar] [CrossRef]
- Gao, G.Y.; Fu, B.J.; Lü, Y.H.; Liu, Y.; Wang, S.; Zhou, J. Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China. Hydrol. Earth Syst. Sci. 2012, 16, 2347–2364. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Yu, P.T.; Xiong, W.; Shen, Z.X.; Guo, M.C.; Shi, Z.J.; Du, A.; Wang, L.M. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China. J. Am. Water Resour. 2008, 44, 1086–1097. [Google Scholar] [CrossRef]
- Kimura, R.; Liu, Y.; Takayama, N.; Zhang, X.; Kamichika, M.; Matsuoka, N. Heat and water balances of the bare soil surface and the potential distribution of vegetation in the Loess Plateau, China. J. Arid Environ. 2005, 63, 439–457. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
ASL Site (n = 27) | SPT Site (n = 27) | |
---|---|---|
TN (%) | 0.10 ± 0.002 | 0.12 ± 0.004 |
TC (%) | 2.25 ± 0.025 | 2.54 ± 0.045 |
TS (%) | 0.02 ± 0.001 | 0.02 ± 0.002 |
SOC (g/kg) | 20.37 ± 1.366 | 16.38 ± 0.823 |
pH | 8.31 ± 0.016 | 8.28 ± 0.013 |
EC (μs cm−1) | 137.34 ± 2.051 | 153.43 ± 2.930 |
Morphological Traits | ASL | SPT |
---|---|---|
Mean Height (cm) (n = 20) | 55.6 | 87.2 |
Mean canopy cover area (cm2) (n = 20) | 3703.4 | 4022.8 |
Mean canopy bottom height (cm) (n = 20) | 10.6 | 34.1 |
Mean canopy depth (cm) (n = 20) | 45.1 | 53.2 |
Mean basal area (cm2) (n = 20) | 1504.3 | 453.1 |
Mean leaf area (cm2) (n = 123) | 4.58 | 5.96 |
Mean leaf SPI (n = 123) | 7.15 | 1.82 |
Stem density (stem/m2) (n = 20) | 85.6 | 17.5 |
Species | Gauges | Canopy Depth (cm) | Canopy Cover (%) |
---|---|---|---|
SPT | 1# | 49 | 93.4 |
2# | 52.7 | 99.1 | |
3# | 53.3 | 95.2 | |
4# | 44 | 95.9 | |
5# | 69.7 | 97.3 | |
ASL | 1# | 50 | 93.4 |
2# | 33.3 | 82.5 | |
3# | 50.3 | 76.8 | |
4# | 44.3 | 88.7 | |
5# | 45 | 88.2 |
Slope | Aspect | Ratios of Basal Area (%) | Canopy Cover (%) | Plant Height (cm) | |
---|---|---|---|---|---|
SPT 1 | 17 | NW | 5 | 85.8 | 80 |
SPT 2 | 17 | NW | 5 | 97.2 | 120 |
SPT 3 | 17 | NW | 7.56 | 83.3 | 77 |
ASL 1 | 17 | NW | 19.6 | 76.3 | 50 |
ASL 2 | 17 | NW | 44.2 | 70.1 | 52 |
ASL 3 | 17 | NW | 33.3 | 75 | 48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, L. Effect of Plant Morphological Traits on Throughfall, Soil Moisture, and Runoff. Water 2020, 12, 1731. https://doi.org/10.3390/w12061731
Liu Y, Zhao L. Effect of Plant Morphological Traits on Throughfall, Soil Moisture, and Runoff. Water. 2020; 12(6):1731. https://doi.org/10.3390/w12061731
Chicago/Turabian StyleLiu, Yu, and Liang Zhao. 2020. "Effect of Plant Morphological Traits on Throughfall, Soil Moisture, and Runoff" Water 12, no. 6: 1731. https://doi.org/10.3390/w12061731
APA StyleLiu, Y., & Zhao, L. (2020). Effect of Plant Morphological Traits on Throughfall, Soil Moisture, and Runoff. Water, 12(6), 1731. https://doi.org/10.3390/w12061731