A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. LULC Data
2.3. Data Analysis
3. Results
3.1. Climate during Study
3.2. Annual Stream Water Temperature
3.3. Quarterly Stream Water Temperature
3.4. Monthly Stream Water Temperature
3.5. PCAs
4. Discussion
4.1. Climate during Study
4.2. Stream Water Temperature
4.3. Stream Water Temperature LULC Relations
4.4. LULC Tw Tipping Points
4.5. Study Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
Jan | 0.37 | 0.11 | 0.04 | 0.07 |
Feb | 0.31 | 0.24 | 0.14 | 0.13 |
March | 0.32 | 0.24 | 0.06 | 0.04 |
April | 0.12 | 0.39 | 0.12 | 0.08 |
May | −0.21 | 0.34 | −0.03 | 0.08 |
June | −0.28 | 0.29 | 0.02 | 0.04 |
July | −0.31 | 0.25 | 0.15 | −0.03 |
Aug | −0.29 | 0.27 | 0.15 | −0.05 |
Sep | −0.28 | 0.29 | 0.03 | −0.04 |
Oct | 0.02 | 0.39 | 0.08 | 0.14 |
Nov | 0.34 | 0.21 | 0.02 | 0.04 |
Dec | 0.37 | 0.15 | 0.05 | −0.01 |
Mixed Development | 0.02 | 0.19 | −0.72 | −0.02 |
Agriculture | 0.08 | 0.03 | 0.39 | −0.80 |
Forested | −0.08 | −0.22 | 0.49 | 0.55 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
Jan | 0.02 | 0.53 | 0.23 | 0.10 |
Feb | 0.30 | 0.06 | 0.29 | 0.13 |
March | 0.27 | 0.16 | 0.15 | 0.02 |
April | 0.32 | −0.16 | 0.12 | 0.16 |
May | 0.33 | −0.10 | −0.18 | 0.08 |
June | 0.32 | −0.02 | 0.02 | 0.24 |
July | 0.32 | −0.14 | −0.13 | 0.00 |
Aug | 0.34 | −0.12 | −0.17 | −0.06 |
Sep | 0.31 | −0.07 | −0.17 | −0.29 |
Oct | 0.31 | −0.18 | −0.06 | −0.16 |
Nov | 0.28 | 0.22 | 0.05 | 0.33 |
Dec | 0.13 | 0.50 | 0.16 | 0.08 |
Mixed Development | −0.02 | 0.28 | −0.63 | 0.17 |
Agriculture | 0.15 | 0.17 | 0.29 | −0.73 |
Forested | −0.08 | −0.40 | 0.46 | 0.30 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
Jan | 0.30 | −0.04 | 0.26 | −0.22 |
Feb | 0.34 | −0.16 | 0.07 | −0.04 |
March | 0.36 | −0.17 | −0.08 | −0.01 |
April | 0.32 | −0.04 | 0.00 | −0.03 |
May | 0.31 | 0.17 | −0.03 | −0.08 |
June | 0.24 | 0.40 | 0.02 | −0.10 |
July | 0.03 | 0.51 | 0.14 | 0.10 |
Aug | 0.10 | 0.38 | 0.31 | 0.27 |
Sep | 0.17 | 0.40 | 0.16 | 0.01 |
Oct | 0.34 | −0.10 | 0.01 | 0.08 |
Nov | 0.36 | −0.14 | 0.09 | 0.00 |
Dec | 0.33 | −0.26 | −0.09 | 0.09 |
Mixed Development | 0.10 | 0.24 | −0.62 | −0.20 |
Agriculture | 0.03 | −0.12 | 0.06 | 0.82 |
Forested | −0.13 | −0.17 | 0.61 | −0.34 |
References
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 918, 902–918. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Webb, B.W. Trends in stream and river temperature. Hydrol. Process. 1996, 10, 205–226. [Google Scholar] [CrossRef]
- Coutant, C.C. Perspectives on Temperature in the Pacific Northwest’s Fresh Waters; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1999. [Google Scholar]
- Winder, M.; Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Pollock, M.M.; Beechie, T.J.; Liermann, M.; Bigley, E.R. Stream Temperature Relationships to Forest Harvest in the Olympic Peninsula. Fish. Sci. 2009, 45, 1–33. [Google Scholar]
- Petty, J.T.; Thorne, D.; Huntsman, B.M.; Mazik, P.M. The temperature-productivity squeeze: Constraints on brook trout growth along an Appalachian river continuum. Hydrobiologia 2014, 727, 151–166. [Google Scholar] [CrossRef]
- Martin, R.W.; Petty, J.T. Local stream temperature and drainage network topology interact to influence the distribution of smallmouth bass and brook trout in a Central appalachian watershed. J. Freshw. Ecol. 2009, 24, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Petty, J.T.; Hansbarger, J.L.; Huntsman, B.M.; Mazik, P.M. Brook trout movement in response to temperature, flow, and thermal refugia within a complex Appalachian riverscape. Trans. Am. Fish. Soc. 2012, 141, 1060–1073. [Google Scholar] [CrossRef]
- Poole, G.C.; Berman, C.H. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 2001, 27, 787–802. [Google Scholar] [CrossRef]
- Borman, M.; Larson, L. A case study of river temperature response to agricultural land use and environmental thermal patterns. J. Soil Water Conserv. 2003, 58, 8–12. [Google Scholar]
- Kellner, E.; Hubbart, J.; Stephan, K.; Freedman, Z.; Kutta, E.; Kelly, C.; Morrissey, E. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Barnhart, B.; Babbar-Sebens, M.; Ficklin, D. Modeling landscape change effects on stream temperature using the Soil and Water Assessment Tool. Water Switz. 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.D.; Spittlehouse, D.L.; Story, A. Riparian microclimate and stream temperature response to forest harvesting: A review. J. Am. Water Resour. Assoc. 2005, 7, 813–834. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987; ISBN 0-203-71545-4. [Google Scholar]
- Gravelle, J.A.; Link, T.E. Influence of timber harvesting on headwater peak stream temperatures in a northern Idaho watershed. (Special issue: Science and management of forest headwater streams). For. Sci. 2007, 53, 189–205. [Google Scholar]
- Webb, B.W.; Zhang, Y. Water temperatures and heat budgets in Dorset chalk water courses. Hydrol. Process. 1999, 321, 309–321. [Google Scholar] [CrossRef]
- Webb, B.W.; Zhang, Y. Spatial and Seasonal Variablility in the Componeets of The River Heat Budget. Hydrol. Process. 1997, 11, 79–101. [Google Scholar] [CrossRef]
- Bulliner, E.; Hubbart, J.A. An improved hemispherical photography model for stream surface shortwave radiation estimations in a central U.S. hardwood forest. Hydrol. Process. 2013, 27, 3885–3895. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.K.; Almlöf, K. Adapting boreal streams to climate change: Effects of riparian vegetation on water temperature and biological assemblages. Freshw. Sci. 2016, 35, 984–997. [Google Scholar] [CrossRef]
- Johnson, S.L.; Jones, J.A. Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon. Can. J. Fish. Aquat. Sci. 2011, 57, 30–39. [Google Scholar] [CrossRef]
- Xuhui, L. Fundamentals of Boundary-Layer Meteorology; Springer: Gewerbestrasse, Switzerland, 2018; ISBN 978-3-319-60851-8. [Google Scholar]
- Boyde, C. Water Quality: An Introduction; Springer: Gewerbestrasse, Switzerland, 2016; ISBN 978-3-319-70548-4. [Google Scholar]
- Petersen, F.; Hubbart, J.A.; Kellner, E.; Kutta, E. Land-use-mediated Escherichia coli concentrations in a contemporary Appalachian watershed. Environ. Earth Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Wiebe, K.D.; Gollehon, N.R. Agricultural Resources and Environmental Indicators; Nova Publishers: Hauppauge, NY, USA, 2007; ISBN 978-1-60021-467-7. [Google Scholar]
- Younus, M.; Hondzo, M.; Engel, B.A. Stream Temperature Dynamics in Upland Agricultural Watersheds. J. Environ. Eng. 2000, 126, 518–526. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998; ISBN 978-0-387-94937-6. [Google Scholar]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing Soils to Achieve Greater Water Use Efficiency: A Review. Agron. J. 2001, 93, 10. [Google Scholar] [CrossRef]
- Kinouchi, T.; Yagi, H.; Miyamoto, M. Increase in stream temperature related to anthropogenic heat input from urban wastewater. J. Hydrol. 2007, 335, 78–88. [Google Scholar] [CrossRef]
- Palmer, M.A.; Nelson, K.C. Stream Temperature Surges under Urbanization. J. Am. Water Resour. Assoc. 2007, 43, 440–452. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Urban Stormwater Temperature Surges: A Central US Watershed Study. Hydrology 2015, 193–209. [Google Scholar] [CrossRef]
- Herb, W.; Janke, B.; Mohseni, O.; Stefan, H. Thermal pollution of streams by runoff from paved surfaces. Hydrol. Process. 2008, 22, 987–999. [Google Scholar] [CrossRef]
- Rice, J.S.; Anderson, W.P., Jr.; Thaxton, C.S. Urbanization influences on stream temperature behavior within low-discharge headwater streams. Hydrol. Res. Lett. 2011, 5, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.J.; Meyer, J.L. Stream in The Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Schaffitel, A.; Bayer, P. Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Environ. Sci. Technol. 2013, 47, 9747–9755. [Google Scholar] [CrossRef]
- Sinokrot, B.A.; Stefan, H.G. Stream temperature dynamics: Measurements and modeling. Water Resour. Res. 1993, 29, 2299–2312. [Google Scholar] [CrossRef]
- O’Driscoll, M.A.; DeWalle, D.R. Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. J. Hydrol. 2006, 329, 140–153. [Google Scholar] [CrossRef]
- Webb, B.W.; Nobilis, F. Long-term perspective on the nature of the water-air temperature relationship—A case study. Hydrol. Process. 1997, 11, 137–147. [Google Scholar] [CrossRef]
- Gu, R.; McCutcheon, S.; Chen, C.J. Development of weather-dependent flow requirements for river temperature control. Environ. Manag. 1999, 24, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Raitz, K. Appalachia: A Regional Geography: Land, People, and Development; Routledge: Abingdon, UK, 2019; ISBN 978-0-429-72421-3. [Google Scholar]
- Zajíček, A.; Kvítek, T.; Kaplická, M.; Doležal, F.; Kulhavý, Z.; Bystřický, V.; Žlábek, P. Drainage water temperature as a basis for verifying drainage runoff composition on slopes. Hydrol. Process. 2011, 25, 3204–3215. [Google Scholar] [CrossRef]
- Houston, D.; Werritty, A.; Bassett, D.; Geddes, A.; Hoolachan, A.; McMillan, M. Pluvial (Rain-Related) Flooding in Urban Areas: The Invisible Hazard; Joseph Rowntree Foundation: London, UK, 2011. [Google Scholar]
- LeBlanc, R.T.; Brown, R.D.; FitzGibbon, J.E. Modeling the effects of land use change on the water temperature in unregulated urban streams. J. Environ. Manag. 1997, 49, 445–469. [Google Scholar] [CrossRef]
- Petersen, F.; Hubbart, J.A. Quantifying Escherichia coli and Suspended Particulate Matter Concentrations in a Mixed-Land Use Appalachian Watershed. Water 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Petersen, F.; Hubbart, J.A. Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water 2020, 12, 1094. [Google Scholar] [CrossRef]
- Zeiger, S.; Hubbart, J.A.; Anderson, S.H.; Stambaugh, M.C. Quantifying and modelling urban stream temperature : A central US watershed study. Hydrol. Prochydrol. Process. 2016, 514, 503–514. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Zeiger, S.J. A Case-Study Application of the Experimental Watershed Study Design to Advance Adaptive Management of Contemporary Watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Hewlett, J.D.; Lull, H.W.; Reinhart, K.G. In Defense of Experimental Watersheds. Water Resour. Res. 1969, 5, 306–316. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management: Long-term data in hydrology. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Kellner, E.; Hubbart, J.A. Application of the experimental watershed approach to advance urban watershed precipitation/discharge understanding. Urban. Ecosyst. 2017, 20, 799–810. [Google Scholar] [CrossRef]
- The West Virginia Water Research Institute and The West Run Watershed Association. 2008; Watershed Based Plan for West Run. West Virginia Water Res. Inst. Available online: https://dep.wv.gov/WWE/Programs/nonptsource/WBP/Documents/WP/WestRun_WBP.pdf (accessed on 13 April 2020).
- Arguez, A.; Durre, I.; Applequist, S.; Vose, R.S.; Squires, M.F.; Yin, X.; Heim, R.R.; Owen, T.W. NOAA’s 1981–2010 U.S. Climate Normals: An Overview. Bull. Am. Meteorol. Soc. 2012, 93, 1687–1697. [Google Scholar] [CrossRef]
- Kutta, E.; Hubbart, J. Climatic Trends of West Virginia: A Representative Appalachian Microcosm. Water 2019, 11, 1117. [Google Scholar] [CrossRef] [Green Version]
- Kutta, E.; Hubbart, J. Observed Mesoscale Hydroclimate Variability of North America’s Allegheny Mountains at 40.2° N. Climate 2019, 7, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kutta, E.; Hubbart, J.A. Reconsidering meteorological seasons in a changing climate. Clim. Change 2016, 137, 511–524. [Google Scholar] [CrossRef]
- United States Census Bureau. Available online: https://2020census.gov/?cid=23745:united%20states%20census%20bureau:sem.ga:p:dm:en:&utm_source=sem.ga&utm_medium=p&utm_campaign=dm:en&utm_content=23745&utm_term=united%20states%20census%20bureau (accessed on 12 April 2020).
- Grime, J.P. Competitive Exclusion in Herbaceous Vegetation. Nature 1973, 242, 344–347. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global perspectives on the urban stream syndrome. Freshw. Sci. 2016, 35, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical methods in water resources. Stat. Methods Water Resour. 1992. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Jay, A.; Avery, C.; Barrie, D.; Apurva, D.; DeAngelo Dzaugis, B.; Kolian, M.; Lewis, K.; Reeves, K.; Winner, D. Fourth National Climate Assessment; U.S. Government Publishing Office: Washington, DC, USA, 2018; pp. 33–71. [Google Scholar]
- Beschta, R.L.; Taylor, R.L. Stream Temperature Increases and Land Use in a Forested Oregon Watershed. JAWRA J. Am. Water Resour. Assoc. 1988, 24, 19–25. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’homme, E.B. Stream Temperature Estimation from Air Temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G. Stream temperature/air temperature relationship: A physical interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Macedo, M.N.; Coe, M.T.; DeFries, R.; Uriarte, M.; Brando, P.M.; Neill, C.; Walker, W.S. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Wu, J.; He, C. A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation. Landsc. Ecol. 2016, 31, 1139–1153. [Google Scholar] [CrossRef]
- Story, A.; Moore, R.D.; Macdonald, J.S. Stream temperatures in two shaded reaches below cutblocks and logging roads: Downstream cooling linked to subsurface hydrology. Can. J. For. Res. 2003, 33, 1383–1396. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W.P.; Anderson, J.L.; Thaxton, C.S.; Babyak, C.M. Changes in stream temperatures in response to restoration of groundwater discharge and solar heating in a culverted, urban stream. J. Hydrol. 2010, 393, 309–320. [Google Scholar] [CrossRef] [Green Version]
Site | Mixed Development (km² (%)) | Agriculture (km² (%)) | Forested (km² (%)) | Sub-Basin (km² (%)) Total |
---|---|---|---|---|
1 | 0.2 (53.2) | 0.1 (38.7) | 0.0 (8.1) | 0.3 (1.3) |
2 | 0.0 (13.6) | 0.0 (12.2) | 0.2 (74.2) | 0.3 (1.3) |
3 | 0.4 (22.4) | 0.3 (16.7) | 1.1 (61.3) | 1.9 (8.0) |
4 | 0.6 (25.9) | 0.4 (14.9) | 1.5 (59) | 2.5 (10.7) |
5 | 0.1 (23.4) | 0.1 (25.5) | 0.2 (51.1) | 0.4 (1.6) |
6 | 0.9 (23.9) | 0.6 (17.2) | 2.2 (58.7) | 3.7 (16.0) |
7 | 0.1 (16.3) | 0.2 (28.6) | 0.4 (54.9) | 0.8 (3.4) |
8 | 0.5 (30.8) | 0.3 (16.5) | 0.8 (52.4) | 1.6 (6.7) |
9 | 0.6 (23.9) | 0.4 (19.3) | 1.2 (52.8) | 2.3 (9.8) |
10 | 1.5 (24.9) | 1.1 (18.4) | 3.5 (56.5) | 6.2 (26.6) |
11 | 0.3 (18.2) | 0.7 (41.9) | 0.7 (39.2) | 1.8 (7.5) |
12 | 0.4 (31.8) | 0.4 (33.7) | 0.4 (34.5) | 1.2 (7.5) |
13 | 2.8 (26.8) | 2.7 (25.8) | 5.0 (47.1) | 10.5 (45.3) |
14 | 0.5 (16.2) | 0.9 (26.4) | 1.9 (56.9) | 3.4 (14.4) |
15 | 0.7 (70.3) | 0.1 (10.3) | 0.2 (19.4) | 1.0 (4.2) |
16 | 0.0 (5.4) | 0.1 (58.7) | 0.1 (35.2) | 0.2 (1.1) |
17 | 0.0 (4.8) | 0.1 (9.4) | 0.6 (85.8) | 0.7 (3.2) |
18 | 4.3 (26.0) | 4.1 (24.9) | 8.0 (48.9) | 16.4 (70.6) |
19 | 5.6 (29.4) | 4.2 (22.5) | 9.0 (47.9) | 18.9 (81.2) |
20 | 3.0 (89.2) | 0.1 (4.2) | 0.2 (6.6) | 3.4 (14.7) |
21 | 8.7 (38.1) | 4.5 (19.5) | 9.7 (42.2) | 22.9 (98.7) |
22 | 8.8 (37.7) | 4.5 (19.4) | 9.9 (42.7) | 23.2 (100.0) |
Reclassified LULC | Original LULC Classification |
---|---|
Mixed Development | Roads, impervious, mixed development, barren |
Agriculture | Low vegetation, hay pasture, cultivated crops |
Forested | Mine grass, forest, mixed mesophytic forest, dry mesic oak forest, dry oak forest, small stream riparian habitats |
Open water | Water, river floodplains, and wetlands PEM |
Sites/Season/Month | Mean (°C) | Standard Deviation (°C) | Minimum (°C) | Maximum (°C) |
---|---|---|---|---|
Site 1 | 10.9 | 4.4 | −0.3 | 22.2 |
Site 2 | 10.5 | 5.4 | −0.2 | 20.6 |
Site 3 | 10.8 | 6.1 | −0.5 | 21.6 |
Site 4 | 10.5 | 6.7 | −1.9 | 22.8 |
Site 5 | 11.9 | 7.6 | −0.6 | 27.4 |
Site 6 | 11.7 | 7.1 | −0.7 | 25.9 |
Site 7 | 11.2 | 6.7 | −2.9 | 23.2 |
Site 8 | 11.5 | 6.0 | −1.1 | 22.3 |
Site 9 | 11.8 | 6.5 | −1.2 | 23.4 |
Site 10 | 11.3 | 7.1 | −1.1 | 23.5 |
Site 11 | 12.5 | 6.2 | 1.2 | 27.3 |
Site 12 | 11.3 | 7.9 | −1.3 | 27.4 |
Site 13 | 11.4 | 7.0 | −1.3 | 23.7 |
Site 14 | 11.4 | 7.5 | −1.1 | 26.4 |
Site 15 | 12.4 | 6.7 | −1.1 | 24.1 |
Site 16 | 10.8 | 7.0 | −3.0 | 26.7 |
Site 17 | 10.1 | 6.9 | −1.4 | 21.5 |
Site 18 | 12.0 | 7.3 | −0.9 | 24.8 |
Site 19 | 11.8 | 7.6 | −1.1 | 26.3 |
Site 20 | 11.3 | 7.6 | −2.0 | 23.8 |
Site 21 | 11.7 | 7.7 | −1.2 | 25.8 |
Site 22 | 11.7 | 7.2 | −0.6 | 22.3 |
Quarter 1 | 3.2 | 3.8 | −3.0 | 14.0 |
Quarter 2 | 14.0 | 4.7 | 1.6 | 27.3 |
Quarter 3 | 19.2 | 2.2 | 12.5 | 27.4 |
Quarter 4 | 8.5 | 4.6 | −1.4 | 22.8 |
January | 1.4 | 2.3 | −3.0 | 8.3 |
February | 5.5 | 3.2 | −2.6 | 14.0 |
March | 4.6 | 2.5 | −1.4 | 13.2 |
April | 4.6 | 2.5 | −1.4 | 13.2 |
May | 9.2 | 3.3 | 1.6 | 23.4 |
June | 16.1 | 2.3 | 9.0 | 24.2 |
July | 18.0 | 2.5 | 10.3 | 27.4 |
August | 19.3 | 2.1 | 12.8 | 26.3 |
September | 19.6 | 1.9 | 13.2 | 27.1 |
October | 18.2 | 2.1 | 12.5 | 26.7 |
November | 7.4 | 2.7 | 1.0 | 15.3 |
December | 4.9 | 2.2 | −1.4 | 11.4 |
All Sites | 11.4 | 6.9 | −3.0 | 27.4 |
Site Comparison | p-Value (α = 0.05) | ||
---|---|---|---|
WRW 1 (22.2 °C) Mix Dev; (53.2%) | vs. | WRW 5 (27.4 °C) Forested; (51.1%) | 0.02 |
WRW 1 (22.2 °C) Mix Dev; (53.2%) | vs. | WRW 11 (27.3 °C) Agriculture (41.9%) | 0 |
WRW 1 (22.2 °C) Mix Dev; (53.2%) | vs. | WRW 12 (27.4) Forested; (34.5%) | 0 |
WRW 1 (22.2 °C) Mix Dev; (53.2%) | vs. | WRW 15 (24.1 °C) Mix Dev (70.3%) | 0.01 |
WRW 2 (22.2 °C) Forested; (74.2%) | vs. | WRW 5 (27.4 °C) Forested; (51.1%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 6 (25.9 °C) Forested; (58.7%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 9 (23.4 °C) Forested; (52.8%) | 0.01 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 11 (27.3 °C) Agriculture (41.9%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 12 (27.4 °C) Forested; (34.5%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 14 (26.4 °C) Forested (56.9%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 15 (24.1 °C) Mix Dev (70.3%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 18 (24.8 °C) Forested; (48.9%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 19 (26.3 °C) Forested; (47.9%) | 0 |
WRW 2 (20.6 °C) Forested; (74.2%) | vs. | WRW 21 (25.8 °C) Forested; (42.2%) | 0.01 |
WRW 3 (21.6 °C) Forested; (61.3%) | vs. | WRW 5 (27.4 °C) Forested; (51.1%) | 0.01 |
WRW 3 (21.6 °C) Forested; (61.3%) | vs. | WRW 11 (27.3 °C) Agriculture (41.9%) | 0 |
WRW 3 (21.6 °C) Forested; (61.3%) | vs. | WRW 12 (27.4 °C) Forested; (34.5%) | 0 |
WRW 3 (21.6 °C) Forested; (61.3%) | vs. | WRW 15 (24.1 °C) Mix Dev (70.3%) | 0.01 |
WRW 4 (22.8 °C) Forested; (59%) | vs. | WRW 5 (27.4 °C) Forested; (51.1%) | 0.01 |
WRW 4 (22.8 °C) Forested; (59%) | vs. | WRW 11 (27.3 °C) Agriculture (41.9%) | 0 |
WRW 4 (22.8 °C) Forested; (59%) | vs. | WRW 12 (27.4 °C) Forested (34.5%) | 0 |
WRW 4 (22.8 °C) Forested; (59%) | vs. | WRW 15 (24.1 °C) Forested (85.8%) | 0.01 |
WRW 5 (27.4 °C) Forested; (51.1%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0 |
WRW 6 (25.9 °C) Forested; (58.7%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0.01 |
WRW 11 (27.3 °C) Agriculture (41.9%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0 |
WRW 12 (27.4 °C) Forested; (34.5%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0 |
WRW 14 (26.4 °C) Forested (56.9%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0.01 |
WRW 15 (24.1 °C) Mix Dev (70.3%) | vs. | WRW 17 (21.5 °C) Forested (85.8%) | 0 |
WRW 17 (21.5 °C) Forested (85.8%) | vs. | WRW 18 (24.8 °C) Forested; (48.9%) | 0.01 |
WRW 17 (21.5 °C) Forested (85.8%) | vs. | WRW 19 (26.9 °C) Forested; (47.9%) | 0.02 |
WRW 17 (21.5 °C) Forested (85.8%) | vs. | WRW 21 (25.8 °C) Forested; (42.2%) | 0.02 |
All Sites | ||||||||||||||||
Max Correlation | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Mixed Development | 0.0 | 0.1 | 0.0 | −0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | −0.1 | 0.3 | 0.3 |
Agriculture | 0.5 | 0.4 | 0.5 | 0.4 | 0.3 | 0.5 | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.5 |
Forested | −0.1 | −0.2 | −0.5 | −0.3 | −0.3 | −0.2 | −0.3 | −0.1 | −0.3 | −0.2 | −0.3 | −0.4 | −0.5 | −0.3 | −0.4 | −0.5 |
Mainstem | ||||||||||||||||
Max Correlation | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Mixed Development | 0.0 | 0.4 | 0.5 | 0.4 | −0.6 | 0.0 | 0.2 | 0.6 | 0.6 | 0.4 | 0.5 | 0.9 | 0.9 | 0.4 | 0.6 | −0.1 |
Agriculture | 0.5 | 0.3 | 0.5 | 0.8 | −0.2 | 0.5 | 0.4 | 0.5 | 0.4 | 0.3 | 0.5 | 0.7 | 0.7 | 0.8 | 0.8 | 0.7 |
Forested | −0.3 | −0.5 | −0.6 | −0.6 | 0.5 | −0.3 | −0.4 | −0.7 | −0.7 | −0.5 | −0.6 | −0.9 | −0.9 | −0.6 | −0.7 | −0.2 |
Tributaries | ||||||||||||||||
Max Correlation | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Mixed Development | 0.0 | 0.1 | 0.1 | −0.2 | 0.2 | 0.1 | −0.1 | −0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.1 | 0.6 | 0.4 |
Agriculture | 0.5 | 0.3 | 0.4 | 0.3 | −0.1 | 0.4 | 0.2 | 0.2 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.4 |
Forested | 0.0 | 0.0 | −0.4 | −0.1 | −0.4 | 0.4 | 0.2 | 0.4 | 0.3 | 0.5 | 0.3 | 0.2 | 0.1 | 0.3 | 0.4 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horne, J.P.; Hubbart, J.A. A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed. Water 2020, 12, 1756. https://doi.org/10.3390/w12061756
Horne JP, Hubbart JA. A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed. Water. 2020; 12(6):1756. https://doi.org/10.3390/w12061756
Chicago/Turabian StyleHorne, Jason P., and Jason A. Hubbart. 2020. "A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed" Water 12, no. 6: 1756. https://doi.org/10.3390/w12061756
APA StyleHorne, J. P., & Hubbart, J. A. (2020). A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed. Water, 12(6), 1756. https://doi.org/10.3390/w12061756