Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact
Abstract
1. Introduction
2. Overview
2.1. Groundwater
2.2. Streams and Hyporheic Zones
2.3. Lakes and Karst Mountain Ponds
2.4. AQUALIFE Software
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bunn, S.E. Grand Challenge for the Future of Freshwater Ecosystems. Front. Environ. Sci. 2016, 4, 257. [Google Scholar] [CrossRef]
- Bassem, S.M. Water pollution and aquatic biodiversity. Biodivers. Int. J. 2020, 4, 10–16. [Google Scholar]
- Erasmus, J.; Malherbe, W.; Zimmermann, S.; Lorenz, A.; Nachev, M.; Wepener, V.; Sures, B.; Smit, N.J. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total. Environ. 2020, 703, 134738. [Google Scholar] [CrossRef]
- Pal, A.; Gin, K.Y.-H.; Lin, A.Y.-C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total. Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Boy-Roura, M.; Nolan, B.T.; Menció, A.; Mas-Pla, J. Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol. 2013, 505, 150–162. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1–15. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Pahl-Wostl, C.; Bunn, S.E.; Lawford, R. Global water, the anthropocene and the transformation of a science. Curr. Opin. Environ. Sustain. 2013, 5, 539–550. [Google Scholar] [CrossRef]
- UN-United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. In Proceedings of the 47th Session of the United Nations Statistical Commission, New York, NY, USA, 8–11 March 2016. [Google Scholar]
- MEA-Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Balian, E.V.; Segers, H.; Martens, K.; Leveque, C. The Freshwater Animal Diversity Assessment: An overview of the results. Freshw. Anim. Diversity Assess. 2008, 198, 627–637. [Google Scholar] [CrossRef]
- Guzik, M.T.; Austin, A.D.; Cooper, S.J.; Harvey, M.S.; Humphreys, W.F.; Bradford, T.; Tomlinson, M. Is the Australian subterranean fauna uniquely diverse? Invertebr. Syst. 2010, 24, 407–418. [Google Scholar] [CrossRef]
- Por, F.D.; Botosaneanu, L. Stygofauna Mundi, a Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). J. Crustac. Boil. 1987, 7, 203. [Google Scholar] [CrossRef]
- Melita, M.; Amalfitano, S.; Preziosi, E.; Ghergo, S.; Frollini, E.; Parrone, D.; Zoppini, A. Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area. Water 2019, 11, 2624. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Fiasca, B.; Tabilio, A.D.C.; Murolo, A.; Di Cicco, M.; Galassi, D.M.P. The weighted Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones. Ecol. Indic. 2020, 116, 106525. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Murolo, A.; Fiasca, B.; Di Camillo, A.T.; Di Cicco, M.; Lombardo, P. Potential of A Trait-Based Approach in the Characterization of An N-Contaminated Alluvial Aquifer. Water 2019, 11, 2553. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Marzio, W.D.; Fiasca, B.; Galassi, D.M.P.; Korbel, K.; Iepure, S.; Pereira, J.L.; Reboleira, A.S.P.; Schmidt, S.; Hose, G.C. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total. Environ. 2019, 681, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Sánchez, A.; Hose, G.C.; Reboleira, A.S.P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 2020, 244, 125422. [Google Scholar] [CrossRef] [PubMed]
- Hose, G.C.; Symington, K.; Lategan, M.J.; Siegele, R. The Toxicity and Uptake of As, Cr and Zn in a Stygobitic Syncarid (Syncarida: Bathynellidae). Water 2019, 11, 2508. [Google Scholar] [CrossRef]
- Piccini, L.; Di Lorenzo, T.; Costagliola, P.; Lombardo, P. Marble Slurry’s Impact on Groundwater: The Case Study of the Apuan Alps Karst Aquifers. Water 2019, 11, 2462. [Google Scholar] [CrossRef]
- Korbel, K.L.; Stephenson, S.; Hose, G.C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 2019, 81, 39. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Hyne, R.V. Detection and analysis of neonicotinoids in river waters–Development of a passive sampler for three commonly used insecticides. Chemosphere 2014, 99, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hunn, J.; Macaulay, S.; Matthaei, C.D. Food Shortage Amplifies Negative Sublethal Impacts of Low-Level Exposure to the Neonicotinoid Insecticide Imidacloprid on Stream Mayfly Nymphs. Water 2019, 11, 2142. [Google Scholar] [CrossRef]
- Peralta-Maraver, I.; Posselt, M.; Perkins, D.; Robertson, A. Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities. Water 2019, 11, 2610. [Google Scholar] [CrossRef]
- Labuschagne, M.; Wepener, V.; Nachev, M.; Zimmermann, S.; Sures, B.; Smit, N.J. The Application of Artificial Mussels in Conjunction with Transplanted Bivalves to Assess Elemental Exposure in a Platinum Mining Area. Water 2019, 12, 32. [Google Scholar] [CrossRef]
- Deliberalli, W.; Cansian, R.L.; Pereira, A.A.M.; Loureiro, R.C.; Hepp, L.U.; Restello, R.M. The effects of heavy metals on the incidence of morphological deformities in Chironomidae (Diptera). Zoologia 2018, 35, 1–7. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Pagliarini, S.; Catasti, M.; La Porta, G.; Selvaggi, R.; Gaino, E.; Di Giulio, A.M.; Ali, A. Use of Larval Morphological Deformities in Chironomus plumosus (Chironomidae: Diptera) as an Indicator of Freshwater Environmental Contamination (Lake Trasimeno, Italy). Water 2019, 12, 1. [Google Scholar] [CrossRef]
- Iannella, M.; Console, G.; D’Alessandro, P.; Cerasoli, F.; Mantoni, C.; Ruggieri, F.; Di Donato, F.; Biondi, M. Preliminary Analysis of the Diet of Triturus carnifex and Pollution in Mountain Karst Ponds in Central Apennines. Water 2019, 12, 44. [Google Scholar] [CrossRef]
- Strona, G.; Fattorini, S.; Fiasca, B.; Di Lorenzo, T.; Di Cicco, M.; Lorenzetti, W.; Boccacci, F.; Lombardo, P. AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. Water 2019, 11, 2574. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, T.; Hose, G.C.; Galassi, D.M.P. Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water 2020, 12, 1810. https://doi.org/10.3390/w12061810
Di Lorenzo T, Hose GC, Galassi DMP. Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water. 2020; 12(6):1810. https://doi.org/10.3390/w12061810
Chicago/Turabian StyleDi Lorenzo, Tiziana, Grant C. Hose, and Diana M.P. Galassi. 2020. "Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact" Water 12, no. 6: 1810. https://doi.org/10.3390/w12061810
APA StyleDi Lorenzo, T., Hose, G. C., & Galassi, D. M. P. (2020). Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water, 12(6), 1810. https://doi.org/10.3390/w12061810