Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Bacterial Identification
2.3. DNA Extraction
2.4. PCR Screening for Antibiotic Resistance Genes and Class 1 Integrons
3. Results
3.1. Tetracycline Resistance Genes
3.2. Aminoglycoside Resistance Genes
3.3. β-Lactams and Penicillin Resistance Genes
3.4. Macrolide–Lincosamide–Streptogramin and Chloramphenicol Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2017–2018; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Lien, L.T.; Lan, P.T.; Chuc, N.T.; Hoa, N.Q.; Nhung, P.H.; Thoa, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater in Vietnam. Int. J. Environ. Res. Public Health 2017, 14, 699. [Google Scholar] [CrossRef] [Green Version]
- Ducey, T.F.; Durso, M.L.; Ibekwe, A.M.; Dungan, R.S.; Jackson, C.R.; Frye, J.G.; Castleberry, B.L.; Rashash, D.M.C.; Rothrock, M.J.; Boykin, D.; et al. A newly developed Escherichia coli isolate panel from a cross section of U.S. animal production systems reveals geographic and commodity-based differences in antibiotic resistance gene carriage. J. Hazard. Mater. 2020, 382, 120991. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.W.; Knapp, C.W.; Christensen, B.T.; McCluskey, S.; Dolfing, J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci. Rep. 2016, 6, 21550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.; Gutzkow, T.; Eichler, W.; Puhler, A.; Schluter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; Stedtfeld, R.D.; Guo, X.; Hashsham, S.A. Antimicrobial resistance in the environment. Water Environ. Res. 2016, 88, 1951–1967. [Google Scholar] [CrossRef] [Green Version]
- Hultman, J.; Tamminen, M.; Parnanen, K.; Cairns, J.; Karkman, A.; Virta, M. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. FEMS Microbiol. Ecol. 2018, 94, fiy038. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance 2014; WHO: Geneva, Swizerland, 2015. [Google Scholar]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-resistance genes in waste water-review. Trends Microbiol. 2017, 26, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundborg, C.S.; Tamhankar, A.J. Antibiotic residues in the environment of South East Asia. BMJ 2017, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Yu, T.; Zhang, Y.; Yang, M.; Li, Z.; Liu, M.; Qi, R. Antibiotic Resistance Characteristics of Environmental Bacteria from an Oxytetracycline Production Wastewater Treatment Plant and the Receiving River. Appl. Environ. Microbiol. 2010, 76, 3444–3451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obayiuwana, A.C.; Ogunjobi, A.; Yang, M.; Ibekwe, M. Characterization of Bacterial Communities and their Antibiotic Resistance Profiles in Wastewaters obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Iwane, T.; Urase, T.; Yamamoto, K. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol. 2001, 43, 91–99. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; McGram, K.M.; Hughes, D.W.; Wright, G.D. Sampling the antibiotic resistome. Science 2006, 311, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Nesme, J.; Cécillon, S.; Delmont, T.O.; Monier, J.M.; Vogel, T.M.; Simonet, P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol. 2014, 24, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Surette, M.D.; Wright, G.D. Lessons from the environmental antibiotic resistome. Annu. Rev. Microbiol. 2017, 71, 309–329. [Google Scholar] [CrossRef]
- Markiewicz, Z.; Kwiatkowski, Z.A. Bakterie, Antybiotyki, Lekooporność; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008. [Google Scholar]
- Khan, S.; Knapp, C.W.; Beattie, T.K. Antibiotic resistant bacteria found in municipal drinking water. Environ. Process. 2016, 3, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Munck, C.; Albertsen, M.; Telke, A.; Ellabaan, M.; Nielsen, P.H.; Sommer, M.O. Limited dissemination of the wastewater treatment plant core resistome. Nat. Commun. 2015, 6, 8452. [Google Scholar] [CrossRef] [Green Version]
- Ngwuluka, N.C.; Ochekpe, N.A.; Odumosu, P.O. An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. Afr. J. Biotechnol. 2011, 10, 11259–11264. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Medicin. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila, J.; Martí, S.; Sánchez-Céspedes, J. Porins, Efflux Pumps and Multidrug Resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007, 59, 1210–1215. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, B.; Zou, S.; Fang, H.H.; Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 2014, 62, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Hammaren, R.; Pal, C.; Ostman, M.; Bjorlenius, B.; Flach, C.F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 2016, 572, 697–712. [Google Scholar] [CrossRef]
- Karkman, A.; Johnson, T.A.; Lyra, C.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef]
- Dancer, S.J.; Shears, P.; Platt, D.J. Isolation and characterization of coliforms from glacial ice and water in Canada’s high arctic. J. Appl. Microbiol. 1997, 82, 597–609. [Google Scholar] [CrossRef]
- Roberts, M.C. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol. Biotechnol. 2002, 20, 261–283. [Google Scholar] [CrossRef]
- Guillaume, G.; Verbrugge, D.; Chasseur-Libotte, M.L.; Moens, W.; Collard, J.M. PCR typing of tetracycline resistance determinants (Tet A–E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol. Ecol. 2000, 32, 77–85. [Google Scholar]
- Poppe, C.; Martin, L.; Muckle, A.; Archambault, M.; McEwen, S.; Weir, E. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can. J. Vet. Res. 2006, 70, 105–114. [Google Scholar] [PubMed]
- Moore, I.F.; Hughes, D.W.; Wright, G.D. Tigecycline is modified by the flavin-dependent monooxygenase tet (x). Biochemistry 2005, 44, 11829–11835. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I. Evolution in action: Dissemination of tet (x) into pathogenic microbiota. Front. Microbiol. 2013, 4, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakil, S.; Khan, R.; Zarrilli, R.; Khan, A.U. Aminoglycosides versus bacteria—A description of the action, resistance mechanism, and nosocomial battle ground. J. Biomed. Sci. 2008, 15, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Krögerrecklenfort, E.; Wellington, E.M.H.; Egan, S.; van Elsas, J.D.; van Overbeek, L.; Collard, J.M.; Guillaume, G.; Karagouni, A.D.; Nikolakopoulou, T.L.; et al. Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbiol. Ecol. 2002, 42, 289–302. [Google Scholar] [CrossRef]
- Tennstedt, T.; Szczepanowski, R.; Braun, S.; Pühler, A.; Schlüter, A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol. Ecol. 2003, 45, 239–252. [Google Scholar] [CrossRef]
- Tennstedt, T.; Szczepanowski, R.; Krahn, I.; Pühler, A.; Schlüter, A. Sequence of the 68,869 bp IncP-1a plasmid pTB11 from a wastewater treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid 2005, 53, 218–238. [Google Scholar] [CrossRef]
- Livermore, D.M. Are all beta-lactams created equal? Scand. J. Infect. Dis. Suppl. 1996, 101, 33–43. [Google Scholar]
- Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor. Pers. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Mehrotra, M.; Ghimire, S.; Adewoye, L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet. Microbiol. 2007, 121, 197–214. [Google Scholar] [CrossRef]
- Szczepanowski, R.; Krahn, I.; Linke, B.; Goesmann, A.; Pühler, A.; Schlüter, A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 2004, 150, 3613–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkmann, H.; Schwartz, T.; Bischoff, P.; Kirchen, S.; Obst, U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Methods 2004, 56, 277–286. [Google Scholar] [CrossRef]
- Jiang, X.; Cui, X.; Xu, H.; Liu, W.; Tao, F.; Shao, T.; Pan, X.; Zheng, B. Whole gene sequencing of Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli isolated from a wastewater treatment plant in China. Front. Microbiol. 2019, 10, 1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.C.; Sutcliffe, J.; Courvalin, P.; Jensen, L.B.; Rood, J.; Seppala, H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B antibiotic resistance determinants. J. Antimicrob. Chemother. 1999, 43, 2823–2830. [Google Scholar] [CrossRef] [Green Version]
- Cetin, E.S.; Gunes, H.; Kaya, S.; Aridogan, B.C.; Demirci, M. Macrolide lincosamide streptogramin B resistance phenotypes in clinical staphylococcal isolates. Int. J. Antimicrob. Agents 2008, 31, 364–368. [Google Scholar] [CrossRef]
- Roberts, M.C. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe 2003, 9, 63–69. [Google Scholar] [CrossRef]
- Marosevic, D.; Kaevska, M.; Jaglic, Z. Resistance to the tetracyclines and macrolide-lincosamide-streptogramin group of antibiotics and its genetic linkage—A review. Ann. Agric. Environ. Med. 2017, 24, 338–344. [Google Scholar] [CrossRef]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
Isolates | Accession No. | Source a | Resistance Genes Profile |
---|---|---|---|
Lysinibacillus sp. 210_22 | MH396730 | UTWW | aac(3)-IV, aadE, blaCTX-M, catA1, cmlA, ermC, |
Bacillus methylotrophicus | MH396733 | UTWW | tet(A), tet(C), aadA, aadE, aphA1, aacA4, aac(3)-II, aac(3)-IV, strA, strB, blaTEM, blaCTX-M, catA1, cmlA, sulI, sulII, intl1 |
Pseudomonas gessardii | MH396734 | UTWW | tet(AP), tet(B), tet(J), aacA4, aadB, blaNDM-1, catA1, cmlA, sulI, intl1 |
Bacillus sp. | MH396755 | UTWW | No resistance gene detected |
Proteus mirabilis | MH396753 | TWW | tet(E), tet(30), blaCTX-M, catA1, ermC |
Staphylococcus saprophyticus | MH396742 | TWW | No resistance gene detected |
Acinetobacter sp. | MH396735 | TWW | tet(A), tet(C),tet(E), aac(3)-II, aadA, aadE, aac(3)-IV, aphA1, aacA4, strA, strB, blaTEM, blaCTX-M, catA1, cmlA, ermC, sulI, sulII, intl1 |
Escherichia coli | – | TWW | tet(L) |
Klebsiella pneumoniae | MH396759 | TWW | aac(3)-IV, aadA, aadE, strA, strB, blaTEM, catA1, sulI, sulII, intl1 |
Staphylococcus sp. | MH396744 | TWW | aadB, aadE, blaTEM, catA1, cmlA, sulI, intl1 |
Staphylococcus sp. | MH396757 | RWDS | aac(3)-IV, aadE, catA1 |
Staphylococcus sp. | MH396766 | RWDS | No resistance gene detected |
Bacillus sp. | MH396725 | RWUS | No resistance gene detected |
Bacillus flexus | MH396726 | UTWW | tet(A), catA1 |
Pseudomonas sp. | MH396727 | UTWW | intl1 |
Serratia marcescens | MH396732 | UTWW | tet(B), aac(3)-IV, aadE, catA1, cmlA, intl1 |
Enterobacter hormechei | – | WWHT | tet(A), tet(E), aadA, aac(3)-II, aphA1, aacA4, strA, strB, catA1, cmlA, blaTEM, sulI, sulII, intl1 |
Serratia marcescens | – | WWHT | tet(C), tet(E), tet(T), aac(3)-II, aac(3)-IV, aadA, aadE, aphA1, strA, strB, blaTEM, blaNDM-1, catA1, cmlA, sulI, sulII, intl1 |
Bacillus safensis | MH396728 | WWHT | No resistance gene detected |
Staphylococcus saprophyticus | MH396752 | WWHT | tet(B), tet(AP), tet(L), tet(E), aac(3)-II, aac(3)-IV, aphA1, strA, strB, blaTEM, catA1, cmlA, sulI, sulII, intl1 |
Acinetobacter sp. | MH396768 | WWHT | tet(B) |
Acinetobacter sp. | MH396769 | WWHT | No resistance gene detected |
Proteus vulgaris | MH396738 | WWHT | tet(AP), tet(E), tet(J), tet(X), aadB, blaCTX-M, catA1, cmlA, |
Stenotrophomonas rhizophila | MH396739 | WWHT | aac(3)-IV, strA, strB, sulII, blaNDM-1, catA1, cmlA, intl1 |
Enterobacter sp. | MH396740 | WWHT | tet(B), catA1, intl1 |
Stenotrophomonas maltophilia | MH396760 | WWHT | No resistance gene detected |
Pseudomonas reactans | MH396741 | WWHT | No resistance gene detected |
Proteus mirabilis | MH396745 | WWHT | aac(3)-IV, intl1 |
Staphylococcus saprophyticus | MH396763 | WWHT | tet(A), tet(B), tet(E), tet(J), tet(L), tet(X), aac(3)-II, aadB, strB, catA1, cmlA, sulI |
Staphylococcus saprophyticus | MH396751 | WWHT | tet(B), aadB, aphA1, blaCTX-M, blaNDM-1, cmlA, catA1, ermC, sulI |
Stenotrophomonas maltophilia | MH396764 | WWHT | tet(B), tet(C), tet(E), aadE, blaOXA, blaNDM-1, catA1, ermC, sulII |
Proteus mirabilis | MH396765 | WWHT | No resistance gene detected |
Bacillus sp. | – | WWHT | tet(B), aac(3)-II, aac(3)-IV, aadE, aphA1, strA, strB, blaTEM, blaCTX-M, blaNDM-1, catA1, cmlA, ermC, sulII |
Staphylococcus saprophyticus | MH396754 | WWHT | tet(B), blaCTX-M, catA1, cmlA, ermC |
Staphylococcus saprophyticus | MH396756 | WWHT | No resistance gene detected |
Myroides marinus | MH396758 | WWHT | blaCTX-M, ermC |
Aeromonas aquariorum | – | WWHT | tet(B), tet(J), aac(3)-II, aac(3)-IV, aphA1, strA, strB, blaTEM, catA1, cmlA, sulI, sulII, intl1 |
Stenotrophomonas maltophilia | MH396736 | WWHT | – |
Staphylococcus saprophyticus | MH396770 | WWDP | tet(B), aadB, aadE, aphA1, catA1, cmlA, sulI |
Stenotrophomonas sp. | MH396743 | WWDP | tet(A), tet(AP), tet(E), tet(J), tet(X), aadB, aadE, aphA1, blaNDM-1, catA1, cmlA, sulI |
Proteus mirabilis | MH396761 | WWDP | tet(J) |
Enterobacter hormechei | MH396762 | WWDP | No resistance gene detected |
Bacillus subtilis | MH396746 | WWHT | aac(3)-IV, intl1 |
Aeromonas aquariorum | – | WWHT | intl1 |
Enterobacter hormechei | MH396771 | WWHT | No resistance gene detected |
Uncultured bacterium | – | WWHT | tet(A), tet(E), catA1, ermC, intl1 |
Enterobacter sp. | – | WWHT | aphA1, strA, strB, blaTEM, blaCTX-M, blaNDM-1, catA1, cmlA, sulII, intl1 |
Aeromonas aquariorum | MH396747 | WWHT | tet(A), tet(E), catA1 |
Myroides marinus | MH396729 | WWHT | aac(3)-IV, aadE, catA1, ermC |
Enterobacteriaceae bacterium | MH396731 | WWHT | tet(AP), tet(E), tet(30), aadA, strA, strB, blaNDM-1, catA1, cmlA, sulI, sulII, intl1 |
Proteus mirabilis | – | WWHT | intl1 |
Agrobacterium tumefaciens | MH396720 | WWHT | intl1 |
Bacillus sp. | MH396721 | WWHT | tet(A), tet(E), aadA, aadB, aadE, aac(3)-IV, blaTEM, catA1, cmlA, sulI, intl1 |
Pseudomonas stutzeri | MH396749 | WWHT | aadA, aadE, aac(3)-IV, catA1, sulI, intl1 |
Klebsiella pneumoniae | MH396723 | WWHT | tet(A), tet(E), aadA, blaOXA, blaNDM-1, catA1, cmlA, sulI, sulII, intl1 |
Bacillus sp. | MH396750 | WWHT | No resistance gene detected |
Alcaligenes fecalis | MH396722 | WWHT | tet(A), tet(E), aadE, aac(3)-IV, catA1, sulI, intl1 |
Bacillus sp. | MH396724 | WWHT | tet(E), tet(L) |
Staphylococcus sp. | MH396767 | WWHT | tet(AP), tet(B), tet(E), tet(J), tet(L), aadB, aphA1, blaNDM-1, catA1, cmlA, ermC, sulI |
Enterobacter hormechei | MH396719 | WWHT | tet(A), tet(B), tet(E), blaCTX-M, catA1, cmlA, ermC, intl1 |
Gene Class | Resistance Genes | Bacterial Isolates n (%) |
---|---|---|
Tetracycline resistance genes | ||
▪ Efflux | tet (A, B, C, E, J, L, 30, AP) | 9 (15) |
▪ Ribosomal Protection | tet (T) | 1 (1.7) |
▪ Enzyme Modification | tet (X) | 3 (5.0) |
Aminoglycoside resistance genes | ||
▪ Acetyl transferases | aac(3)-II, aac(3)-IV, aacA4 | 10 (16.7) |
▪ Nucleotidyl transferases | aadA, aadB, aadE | 11 (18.3) |
▪ Phosphor transferases | aphA1, strA, strB | 12 (20) |
β-lactam resistance genes | bla(TEM, OXA, CTX-M, NDM-1) | 9 (15) |
Chloramphenicol genes | catA1, cmlA | 30 (50) |
MLS genes | ermC | 12 (20) |
Sulfonamide genes | sulI, sulII | 16 (26.7) |
Mobile genetic elements | Int1 | 26 (43.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obayiuwana, A.; Ibekwe, A.M. Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria. Water 2020, 12, 1897. https://doi.org/10.3390/w12071897
Obayiuwana A, Ibekwe AM. Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria. Water. 2020; 12(7):1897. https://doi.org/10.3390/w12071897
Chicago/Turabian StyleObayiuwana, Amarachukwu, and Abasiofiok M. Ibekwe. 2020. "Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria" Water 12, no. 7: 1897. https://doi.org/10.3390/w12071897
APA StyleObayiuwana, A., & Ibekwe, A. M. (2020). Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria. Water, 12(7), 1897. https://doi.org/10.3390/w12071897