Experimental Assessment of the Flow Resistance of Coastal Wooden Fences
Abstract
:1. Introduction
2. Methodology
2.1. Formula of Resistances
2.2. Experiment Description
2.3. Wooden Fence Descriptions
3. Experimental Results
3.1. Observation of Pressure Gradient
3.2. Effect of Reynolds Number on Bulk Drag Coefficient
3.3. Forchheimer Coefficient of Fences
4. Discussion
4.1. Pressure Loss between Fence Thicknesses
4.2. Effects of Specific Surface Area
4.3. The Link between Drag Coefficients and Forchheimer Parameter
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmitt, K.; Albers, T.; Pham, T.T.; Dinh, S.C. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. J. Coast. Conserv. 2013, 17, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Albers, T.; San, D.C.; Schmitt, K. Shoreline Management Guidelines: Coastal Protection in the Lower Mekong Delta. Dtsch. Ges. Für Int. Zs. (GiZ) GmbH Manag. Nat. Resour. Coast. Zone Soc Trang Prov 2013, 1, 1–124. [Google Scholar]
- Schmitt, K.; Albers, T. Area Coastal Protection and the Use of Bamboo Breakwaters in the Mekong Delta; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Albers, T.; Von Lieberman, N. Current and Erosion Modelling Survey. Dtsch. Ges. Für Int. Zs. (GiZ) GmbH Manag. Nat. Resour. Coast. Zone Soc Trang Prov. 2011, 1, 1–61. [Google Scholar]
- Van Cuong, C.; Brown, S.; To, H.H.; Hockings, M. Using Melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecol. Eng. 2015, 81, 256–265. [Google Scholar] [CrossRef]
- Dao, T.; Stive, M.J.F.; Hofland, B.; Mai, T. Wave Damping due to Wooden Fences along Mangrove Coasts. J. Coast. Res. 2018, 34, 1317–1327. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J.M. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 2014, 83, 82–92. [Google Scholar] [CrossRef]
- Mendez, F.J.; Losada, I.J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 2004, 51, 103–118. [Google Scholar] [CrossRef]
- Ozeren, Y.; Wren, D.G.; Wu, W. Experimental investigation of wave attenuation through model and live vegetation. J. Waterw. Port Coast. Ocean Eng. 2013, 140, 4014019. [Google Scholar] [CrossRef]
- Hu, Z.; Suzuki, T.; Zitman, T.; Uittewaal, W.; Stive, M. Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coast. Eng. 2014, 88, 131–142. [Google Scholar] [CrossRef]
- Hsu, T.-J.; Sakakiyama, T.; Liu, P.L.-F. A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng. 2002, 46, 25–50. [Google Scholar] [CrossRef]
- Liu, P.L.-F.; Lin, P.; Chang, K.-A.; Sakakiyama, T. Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 322–330. [Google Scholar] [CrossRef]
- Darcy, H.P.G. Les Fontaines Publiques de la Ville de Dijon. Exposition et Application des Principes à Suivre et des Formules à Employer dans les Questions de Distribution d’eau, etc; Victor Dalmont: Paris, France, 1856. [Google Scholar]
- Forchheimer, P. Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 1901, 45, 1782–1788. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Van Gent, M.R.A. Wave interaction with permeable coastal structures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 6, 277A. [Google Scholar]
- Rao, P.T.; Chhabra, R.P. Viscous non-Newtonian flow in packed beds: Effects of column walls and particle size distribution. Powder Technol. 1993, 77, 171–176. [Google Scholar] [CrossRef]
- Tiu, C.; Zhou, J.Z.Q.; Nicolae, G.; Fang, T.; Chhabra, R.P. Flow of viscoelastic polymer solutions in mixed beds of particles. Can. J. Chem. Eng. 1997, 75, 843–850. [Google Scholar] [CrossRef]
- Machač, I.; Cakl, J.; Comiti, J.; Sabiri, N.E. Flow of non-Newtonian fluids through fixed beds of particles: Comparison of two models. Chem. Eng. Process. Process. Intensif. 1998, 37, 169–176. [Google Scholar] [CrossRef]
- De Castro, A.R.; Radilla, G. Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv. Water Resour. 2017, 100, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Van Gent, M.R.A. Stationary and oscillatory flow through coarse porous media. In Communications on Hydraulic and Geotechnical Engineering, No. 1993-09; TU Delft: Delft, The Nertherlands, 1993. [Google Scholar]
- Jensen, B.; Gjøl, N.; Damgaard, E. Investigations on the porous media equations and resistance coef fi cients for coastal structures. Coast. Eng. 2014, 84, 56–72. [Google Scholar] [CrossRef]
- Kantzas, A.; Bryan, J.; Taheri, S. Fundamentals of fluid flow in porous media. Pore Size Distrib. 2012, 1, 1–336. [Google Scholar]
- Arnaud, G.; Rey, V.; Touboul, J.; Sous, D.; Molin, B.; Gouaud, F. Wave propagation through dense vertical cylinder arrays: Interference process and specific surface effects on damping. Appl. Ocean Res. 2017, 65, 229–237. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Kirby, J.T.; Hwang, P.A. Wave diffraction due to areas of energy dissipation. J. Waterw. Port Coast. Ocean Eng. 1984, 110, 67–79. [Google Scholar] [CrossRef]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Sumer, B.M. Hydrodynamics around Cylindrical Strucures; World Scientific: Singapore, 2006. [Google Scholar]
- Williamson, C.H.K. The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake. J. Fluid Mech. 1992, 243, 393–441. [Google Scholar] [CrossRef]
- Schewe, G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 1983, 133, 265–285. [Google Scholar] [CrossRef]
- Bokaian, A.; Geoola, F. Wake-induced galloping of two interfering circular cylinders. J. Fluid Mech. 1984, 146, 383–415. [Google Scholar] [CrossRef]
- Blevins, R.D.; Scanlan, R.H. Flow-Induced Vibration. J. Appl. Mech. 1977, 44, 802. [Google Scholar] [CrossRef]
- Luo, S.C.; Gan, T.L.; Chew, Y.T. Uniform flow past one (or two in tandem) finite length circular cylinder (s). J. Wind. Eng. Ind. Aerodyn. 1996, 59, 69–93. [Google Scholar] [CrossRef]
- Žukauskas, A. Heat transfer from tubes in crossflow. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1972; pp. 93–160. [Google Scholar]
- Zdravkovich, M.M. Review of flow interference between two circular cylinders in various arrangements. J. Fluids Eng. 1977, 99, 618–633. [Google Scholar] [CrossRef]
- Burcharth, H.F.; Andersen, O.K. On the one-dimensional steady and unsteady porous flow equations. Coast. Eng. 1995, 24, 233–257. [Google Scholar] [CrossRef]
- Tosco, T.; Marchisio, D.L.; Lince, F.; Sethi, R. Extension of the Darcy–Forchheimer law for shear-thinning fluids and validation via pore-scale flow simulations. Transp. Porous Media 2013, 96, 1–20. [Google Scholar] [CrossRef]
Q (m3/s) | |||||
---|---|---|---|---|---|
0.00 | |||||
Case | Sample | Arrangement SSA (1/m) | D (mm) | Thicknesses B (cm) | Density (Sticks/m2) | ||
---|---|---|---|---|---|---|---|
Case 1 | | Inhomogeneous SSA = 100.8 | 4.00 | 26.5 34.5 39.0 45.5 58.0 | 8011 | 0.90 | 1.00 |
Case 2 | | Staggered SSA = 107.5 | 4.00 | 25.5 33.0 42.0 53.5 | 8547 | 0.89 | 1.25 |
Case 3 | | Staggered SSA = 164.5 | 4.00 | 29.0 39.5 47.0 54.5 | 13,077 | 0.80 | 1.00 |
Case 4 | | Staggered SSA = 38.1 | 20.0 | 26.5 36.5 46.0 | 603 | 0.80 | 1.36 |
Case 5 | | Staggered SSA = 76.2 | 20.0 | 26.5 36.5 46.0 | 1207 | 0.62 | 0.23 |
Formula | Arrangement | n | Legend | ||
---|---|---|---|---|---|
0.88 | Inhomogeneous; Model | 0.90 | 1.00 | This study | |
0.96 | Staggered; Model | 0.89 | 1.25 | This study | |
0.96 | Staggered; Model | 0.80 | 1.00 | This study | |
0.84 | Staggered; Prototype | 0.80 | 1.36 | This study | |
0.99 | Staggered; Prototype | 0.62 | 0.23 | This study | |
0.72 | Staggered; Model | 0.96 | unknown | [9] | |
0.89 | Staggered; Model | 0.96 | unknown | [10] |
Case | D (mm) | n | |||||
---|---|---|---|---|---|---|---|
1 | 4.0 | 0.90 | 566.6 | 2.234 | 566.6 | 2.234 | 3.89 |
2 | 4.0 | 0.89 | 569.7 | 1.128 | 978.1 | 0.912 | 1.98 |
3 | 4.0 | 0.80 | 580.9 | 1.125 | 2.20 | ||
4 | 20.0 | 0.80 | 516.3 | 1.016 | 1.99 | ||
5 | 20.0 | 0.62 | 1444 | 0.872 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, H.T.; Hofland, B.; Stive, M.J.F.; Mai, T. Experimental Assessment of the Flow Resistance of Coastal Wooden Fences. Water 2020, 12, 1910. https://doi.org/10.3390/w12071910
Dao HT, Hofland B, Stive MJF, Mai T. Experimental Assessment of the Flow Resistance of Coastal Wooden Fences. Water. 2020; 12(7):1910. https://doi.org/10.3390/w12071910
Chicago/Turabian StyleDao, Hoang Tung, Bas Hofland, Marcel J. F. Stive, and Tri Mai. 2020. "Experimental Assessment of the Flow Resistance of Coastal Wooden Fences" Water 12, no. 7: 1910. https://doi.org/10.3390/w12071910
APA StyleDao, H. T., Hofland, B., Stive, M. J. F., & Mai, T. (2020). Experimental Assessment of the Flow Resistance of Coastal Wooden Fences. Water, 12(7), 1910. https://doi.org/10.3390/w12071910