Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Source
2.3. Model Construction and Calibration
2.3.1. Model Construction
2.3.2. Model Calibration and Validation
Abrupt Test and Selection of Calibration and Validation Period
Model Calibration and Validation Results
2.4. Scenarios Setting and Basis
2.4.1. Theoretical Analysis
2.4.2. Scenario Setting
Effect of Subsoiling on the Thickness of the Soil Plough Layer
Effect of Subsoiling on the Soil Porosity
Effect of Subsoiling on Soil Permeability
Scenarios Setting
2.4.3. Simulation Results Display
3. Results
3.1. Effect of Plough Layer Thickness on the Effectiveness of Local Precipitation
3.2. Effect of the Soil Porosity on the Effectiveness of Local Precipitation
3.3. Effect of Soil Permeability on the Effectiveness of Local Precipitation
3.4. Effect of Actual Subsoiling Tillage on the Effectiveness of Local Precipitation
4. Discussion
4.1. Effect of the Plough Layer Thickness on Soil Water Cycle
4.2. Effect of the Soil Porosity on Soil Water Cycle
4.3. Effect of the Soil Permeability on Soil Water Cycle
4.4. Effect of Subsoiling on Soil Water Cycle
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Yu, Z.; White, P.J. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Res. 2013, 151, 35–44. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Deng, A.; Nawaz, M.M.; Li, L.; Chen, Z.; Zheng, Y.; Wang, P.; Song, Z.; Zhang, J.; Zheng, C.; et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil Tillage Res. 2018, 184, 100–108. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Yu, Z. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2019, 187, 182–193. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Bissett, A.; Richardson, A.E.; Baker, G.; Kirkegaard, J.; Thrall, P.H. Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment. Soil Biol. Biochem. 2013, 58, 281–292. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Van Wie, J.B.; Adam, J.C.; Ullman, J.L. Conservation tillage in dryland agriculture impacts watershed hydrology. J. Hydrol. 2013, 483, 26–38. [Google Scholar] [CrossRef]
- Djiemon, A.; Gasser, M.O.; Gallichand, J. Random forests to detect subsoiling and subsurface drainage effects on corn plant height and water table depth. Soil Tillage Res. 2019, 192, 240–249. [Google Scholar] [CrossRef]
- Botta, G.F.; Tolon-Becerra, A.; Lastra-Bravo, X.; Tourn, M. Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas. Soil Tillage Res. 2010, 110, 167–174. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; Allen, N. Spatial and temporal analysis of precipitation and effective rainfall using gauge observations, satellite, and gridded climate data for agriculturalwater management in the upper Colorado River Basin. Remote Sens. 2018, 10, 2058. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Kim, J.; Jeong, S. Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall. Landslides 2018, 15, 523–534. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Zhu, M.M.; Li, W.J. Effective precipitation and water requirements of crops in Hebei province over 60 years. Acta Ecol. Sin. 2018, 38, 560–570. [Google Scholar] [CrossRef]
- Xie, Y.L.; Xia, D.X.; Ji, L.; Huang, G.H. An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecol. Indic. 2018, 92, 301–311. [Google Scholar] [CrossRef]
- Zhang, E.; Yin, X.; Yang, Z.; Xu, Z.; Cai, Y. Assessing crop virtual water content under non-standard growing conditions using Budyko framework. Resour. Conserv. Recycl. 2018, 131, 259–270. [Google Scholar] [CrossRef]
- de Almeida, W.S.; Panachuki, E.; de Oliveira, P.T.S.; da Silva Menezes, R.; Sobrinho, T.A.; de Carvalho, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Singh, K.; Choudhary, O.P.; Singh, H.P.; Singh, A.; Mishra, S.K. Sub-soiling improves productivity and economic returns of cotton-wheat cropping system. Soil Tillage Res. 2019, 189, 131–139. [Google Scholar] [CrossRef]
- Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef] [Green Version]
- Ranch, H.; Simonovic, S. Computer Models of Watershed Hydrology. Director 1995, 14, 1995–1996. [Google Scholar]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; O’Neill, M.; Diop, L.; Bodian, A.; Allen, S.; Koudahe, K.; Lombard, K. Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate. Theor. Appl. Climatol. 2019, 137, 729–743. [Google Scholar] [CrossRef]
- Jia, Y.; Ni, G.; Kawahara, Y.; Suetsugi, T. Simulation of hydrological cycle in an urbanized watershed and effect evaluation of infiltration facilities with WEP model. J. Hydrosci. Hydraul. Eng. 2001, 19, 43–52. [Google Scholar]
- Jia, Y.; Ni, G.; Kawahara, Y.; Suetsugi, T. Development of WEP model and its application to an urban watershed. Hydrol. Process. 2001, 15, 2175–2194. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Wan Zin, W.Z.; Jamaludin, S.; Deni, S.M.; Jemain, A.A. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971–2005. Theor. Appl. Climatol. 2010, 99, 303–314. [Google Scholar] [CrossRef]
- Wang, W. Effects of Subsoiling on Soil Physical Properties and Research of Border Irrigation Technicalparameters; Chinese Academy of Agricultural Sciences: Beijing, China, 2018. [Google Scholar]
- Lampurlanés, J.; Cantero-Martínez, C. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 2003, 95, 526–536. [Google Scholar] [CrossRef]
- Gao, Z.; Song, B.; Wang, C.; Gao, W.; Zhang, L.; Sun, L.; Hao, X.; Liu, F. Soil amelioration by deep ploughing of different machineries and its effect on promoting crop growth and yield. Trans. Chin. Soc. Agric. Eng. 2018, 34, 79–86. [Google Scholar] [CrossRef]
- Kong, X.; Han, C.; Zeng, S.; Wu, Q.; Liu, L. Effects of Different Tillage Managements on the Yield and Characters of Maize. J. Maize Sci. 2014, 22, 108–113. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, Y.; Liu, K.; Ji, B.; Guo, H.; Xue, Z.; Li, C. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. Eur. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Zhang, L. Study on Capacity of Moisture Conservation and the Response of Maize Growth in Dryland; Chinese Academy of Agricultural Sciences: Beijing, China, 2014. [Google Scholar]
- Sun, M.; Gao, Z.Q.; Ren, A.X.; Deng, Y.; Zhao, W.F.; Zhao, H.M.; Yang, Z.P.; He, L.H.; Zong, Y. Contribution of subsoiling in fallow period and nitrogen fertilizer to the soil-water balance and grain yield of dry-land wheat. Int. J. Agric. Biol. 2015, 17, 175–180. [Google Scholar]
- Liu, Q.; Chen, Y.; Liu, Y.; Wen, X.; Liao, Y. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil Tillage Res. 2016, 157, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Yu, X.; Klaghofer, E. Impacts of forest vegetation on runoff generation mechanisms: A review. J. Nat. Resour. 2001, 16, 79–84. [Google Scholar] [CrossRef]
- Lei, T.; Pan, Y.; Liu, H.; Zhao, X.; Zhan, W.; Yuan, J. Measurement of rainfal l-erosion impacted soil infiltration capabil ity of slope land with run-on-ponding water. J. Chem. Inf. Model. 2006, 22, 7–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Wang, Y.; Fu, W.; Wen, Z. Soil infiltration capatiey and its influencing factors of different land use types in Karst slope. Trans. Chin. Soc. Agric. Eng. 2010, 26, 71–76. [Google Scholar]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Evans, R.G. Tillage depth effects on soil physical properties, sugarbeet yield, and sugarbeet quality. Commun. Soil Sci. Plant Anal. 2010, 41, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Bharati, L.; Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agrofor. Syst. 2002, 56, 249–257. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Baumhardt, R.L.; Evett, S.R. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res. 2010, 110, 221–229. [Google Scholar] [CrossRef]
- Garg, A.; Leung, A.K.; Ng, C.W.W. Transpiration reduction and root distribution functions for a non-crop species Schefflera heptaphylla. Catena 2015, 135, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, M.; Wu, W.; Tanveer, S.K.; Wen, X.; Liao, Y. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Drewry, J.J.; Lowe, J.A.H.; Paton, R.J. Effect of subsoiling on soil physical properties and pasture production on a Pallic soil in Southland, New Zealand. N. Z. J. Agric. Res. 2000, 43, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.K.; Garg, A.; Ng, C.W.W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef] [Green Version]
- An, N.; Tang, C.S.; Xu, S.K.; Gong, X.P.; Shi, B.; Inyang, H.I. Effects of soil characteristics on moisture evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Miao, F.; Wang, G. Dryland maize yield and water-use efficiency responses to mulching and tillage practices. Agron. J. 2017, 109, 1196–1209. [Google Scholar] [CrossRef]
- Puertolas, J.; Alcobendas, R.; Alarcón, J.J.; Dodd, I.C. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 2013, 36, 1465–1475. [Google Scholar] [CrossRef]
- Pikul, J.L.; Aase, J.K. Water Infiltration and Storage affected by Subsoiling and Subsequent Tillage. Soil Sci. Soc. Am. J. 2003, 67, 859. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Li, F.; Li, Y.; Gu, C.; Zhang, Q.; Qiao, Y.; Jiao, L.; Zhu, N. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Sci. Total Environ. 2019, 657, 1041–1050. [Google Scholar] [CrossRef]
- Olson, N.C.; Gulliver, J.S.; Nieber, J.L.; Kayhanian, M. Remediation to improve infiltration into compact soils. J. Environ. Manag. 2013, 117, 85–95. [Google Scholar] [CrossRef]
- Evans, S.D.; Lindstrom, M.J.; Voorhees, W.B.; Moncrief, J.F.; Nelson, G.A. Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil Tillage Res. 1996, 38, 35–46. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, C.; Li, H.; He, J.; Sarker, K.K.; Rasaily, R.G.; Liang, Z.; Qiao, X.; Li, H.; Mchugh, A.D.J. The effects of no-tillage with subsoiling on soil properties and maize yield: 12-Year experiment on alkaline soils of Northeast China. Soil Tillage Res. 2014, 137, 43–49. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Al-Kaisi, M.M.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- Ma, S.; Yu, Z.; Shi, Y.; Gao, Z.; Luo, L.; Chu, P.; Guo, Z. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain. Agric. Water Manag. 2015, 150, 9–17. [Google Scholar] [CrossRef]
Indicators | Average Annual Runoff (108 m3) | Relative Error (%) | NSE | Correlation Coefficient | |
---|---|---|---|---|---|
Hydrological Station | Simulation | ||||
Calibration period (1968~1990) | 2.34 | 2.22 | −4.89 | 0.72 | 0.87 |
Validation period (1991~2015) | 2.58 | 2.70 | 4.49 | 0.81 | 0.91 |
Original | P1 | P2 | P3 | P4 | P5 | P6 | |
---|---|---|---|---|---|---|---|
soil thickness(m)-FL | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 |
soil thickness(m)-SL | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
porosity-FL | 0.4 | 0.5 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 |
porosity-SL | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
soil permeability coefficient (m/s)-FL | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 3.75 × 10−5 | 5.0 × 10−5 |
soil permeability coefficient (m/s)-SL | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 | 2.5 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, K.; Qin, T.; Lv, Z.; Li, X.; Nie, H.; Liu, F.; He, S. Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model. Water 2020, 12, 1912. https://doi.org/10.3390/w12071912
Wang J, Wang K, Qin T, Lv Z, Li X, Nie H, Liu F, He S. Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model. Water. 2020; 12(7):1912. https://doi.org/10.3390/w12071912
Chicago/Turabian StyleWang, Jianwei, Kun Wang, Tianling Qin, Zhenyu Lv, Xiangnan Li, Hanjiang Nie, Fang Liu, and Shan He. 2020. "Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model" Water 12, no. 7: 1912. https://doi.org/10.3390/w12071912
APA StyleWang, J., Wang, K., Qin, T., Lv, Z., Li, X., Nie, H., Liu, F., & He, S. (2020). Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model. Water, 12(7), 1912. https://doi.org/10.3390/w12071912