Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
2.2.1. Data Preparation
2.2.2. In-Situ Data
2.2.3. Landsat ETM+ Images
2.3. Methodology
2.3.1. Preprocessing of WorldView-2 Image and In Situ Data
2.3.2. Model Based on Chlorophyll-a Spectral Value from WorldView-2 Image
2.3.3. Preprocessing of Landsat ETM+ Images
2.3.4. Modelling the Field Chlorophyll-a against Nutrients
3. Results and Discussion
3.1. Relationship between In-Situ Chlorophyll-a and the Eutrophication Indicators
3.2. Relationship between Spectral Chlorophyll-a and the Eutrophication Indicators
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Napiorkowska-Krzebietke, A.; Kalinowska, K.; Bogacka-Kapusta, E.; Stawecki, K.; Traczuk, P. Cyanobacterial Blooms and Zooplankton Structure in Lake Ecosystem under Limited Human Impact. Water 2020, 12, 1252. [Google Scholar] [CrossRef]
- Gao, N.; Ma, Y.; Zhao, M.; Zhang, L.; Zhan, H.; Cai, S.; He, Q. Quantile Analysis of Long-Term Trends of Near-Surface Chlorophyll-a in the Pearl River Plume. Water 2020, 12, 1662. [Google Scholar] [CrossRef]
- Putri, M.S.A.; Lin, J.; Hsieh, L.C.; Zafirah, Y.; Andhikaputra, G.; Wang, Y. Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs. Water 2020, 12, 1325. [Google Scholar] [CrossRef]
- Banda, T.D.; Kumarasamy, M. Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Carvalho, R.C.D.; Paco, T.; Branquinho, C.; Silva, J.M.D. Using Chlorophyll a Fluorescence Imaging to Select Desiccation-Tolerant Native Moss species for Water-Sustainable Green Roofs. Water 2020, 12, 1748. [Google Scholar] [CrossRef]
- Brito, D.; Neves, R.; Branco, M.A.; Prazeres, A.; Rodriques, S.; Concalves, M.C.; Ramos, T.B. Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoe Temporary River Basin (Southeast Portugal). Water 2019, 11, 354. [Google Scholar] [CrossRef] [Green Version]
- Abdelmalik, K. Role of statistical remote sensing for Inland water quality parameters prediction. Egypt. J. Remote Sens. Space Sci. 2018, 21, 193–200. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.; Stokes, E.; Deng, C.; Pickett, S.; Taubenbock, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Li, J.; Tian, L.; Song, Q.; Sun, Z.; Yu, H.; Xing, Q. Temporal Variation of Chlorophyll-a Concentrations in Highly Dynamic Waters from Unattended Sensors and Remote Sensing Observations. Sensors 2018, 18, 2699. [Google Scholar] [CrossRef] [Green Version]
- Blix, K.; Palffy, K.; Toth, V.R.; Eltoft, T. Remote Sensing of Water Quality Parameters over Lake Balaton by Using Sentinel-3 OLCI. Water 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Lins, R.C.; Martinez, J.M.; Marques, D.D.M.; Cirilo, J.A.; Fragoso, C.R. Assessment of Chlorophyll-a Remote Sensing Algorithms in Productive Tropical Estuarine-Lagoon System. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Arabi, B.; Salama, M.S.; Wernand, M.R.; Verhoef, W. MOD2SEA: A coupled Atmosphere-Hydro-Optical Model for the Retrieval of Chlorphyll-a from Remote Sensing Observations in Complex Turbid Water. Remote Sens. 2016, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Gittings, J.; Raitsos, D.; Racault, M.; Brewin, R.; Pradhan, Y.; Sathyendranath, S.; Platt, T. Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 2017, 189, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Richlen, M.; Morton, S.; Jamali, E.; Rajan, A.; Anderson, D. The catastrophic 2008–2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 2010, 9, 163–172. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gowe, J.; Dekker, A.; Phinn, S.; Brando, V. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Ledesma, M.M.; Bonansea, M.; Ledesma, C.R.; Rodriquez, C.; Carreno, J.; Pinotti, L. Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir. Water Supply 2019, 19, 2021–2027. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.; Weathers, K.C.; Norouzi, H.; Steele, B. Assessing the effectiveness of Landsat 8 Chlorophyll a retrieval algorithms for regional freshwater monitoring. Ecol. Appl. 2018, 28, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Buditama, G.; Damayanti, A.; Pin, T.G. Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon. IOP Conf. Ser. Earth Environ. Sci. 2017, 98, 012040. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, X.; Bing, Q.; Pan, Y.; Wang, Z.; Fu, Y.; Wang, D.; Liu, J. Study on Retrieval of chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China. Sustainability 2016, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Podder, S.; Chacko, N.; Swain, D. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Front. Mar. Sci. 2019, 6, 598. [Google Scholar] [CrossRef]
- Kuhn, C.; Valerio, A.D.M.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.; Alcantara, E.; Rodriques, T.; Rotta, L.; Bernardo, N.; Imai, N. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). An. Acad. Bras. Cienc. 2018, 90, 1987–2000. [Google Scholar] [CrossRef] [Green Version]
- Tebbs, E.; Remedios, J.; Harper, D. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Torbick, N.; Hu, F.; Zhang, J.; Qi, J.; Becker, B. Mapping Chlorophyll-a Concentrations in West Lake, China using Landsat 7 ETM+. J. Great Lakes Res. 2008, 34, 559–565. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Zhao, J.; Ghedira, H. Monitoring red tide with satellite imagery and numerical models: A case study in the Arabian Gulf. Mar. Pollut. Bull. 2014, 97, 305–313. [Google Scholar] [CrossRef]
- Ali, T.; Mortula, M.; Atabay, S. Study of water quality in Dubai Creek using DubaiSat-1 multispectral imagery. Commun. Comput. Inf. Sci. 2013, 398, 200–210. [Google Scholar]
- Isenstein, E.; Park, M. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Oki, K.; Wang, Y.; Oki, T.; Yamashiki, Y.; Takara, K.; Miura, S.; Imai, A.; Komatsu, K.; Kawasaki, N. Analysis of stream water quality and estimation of nutrient load with the aid of Quick Bird remote sensing imagery. Hydrol. Sci. J. 2012, 57, 850–860. [Google Scholar]
- Ali, T.; Mortula, M.; Atabay, S. Monitoring and assessment of water quality of a coastal lake using high resolution imagery and GIS. Pollut. Res. 2017, 36, 8–17. [Google Scholar]
- Hussein, H.; Atabay, S.; Mortula, M.M.; Ali, T. Investigation of Water Quality Parameters for Coastal Lagoon. Pollut. Res. 2017, 37, 25–31. [Google Scholar]
- Ali, T.; Mortula, M.; Atabay, S. GIS-based study on the Susceptibility of Dubai Creek (UAE) to Eutrophication. Pol. J. Environ. Stud. 2016, 25, 2275–2282. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Waste Water; American Public Health Association: Washington, DC, USA, 1998; 874p. [Google Scholar]
- Upkide, T.; Comp, C. Radiometric Use of WorldView-2 Imagery. 2010. Available online: https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/104/Radiometric_Use_of_WorldView-2_Imagery.pdf (accessed on 1 November 2019).
- Chavez, P. Image-based atmospheric correction: Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Brivio, P.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Caspers, H. Eutrophication of waters. Monitoring, assessment and control. Organ. Econ. Coop. Dev. 1982, 69, 200. [Google Scholar]
- Dial, G.; Bowen, H.; Gerlach, F.; Grodecki, J.; Oleszczuk, R. The Benefits of the 8 Spectral Bands of WorldView-2. 2010. Available online: http://www.army.mil/article/70358/Nano_technology_marches_ on/ (accessed on 4 March 2020).
- Ali, T.; Mortula, M.; Atabay, S.; Navadeh, E. A GIS-based spatiotemporal study of the variability of water quality in the Dubai Creek, UAE. Water Qual. Res. J. Can. 2015, 51, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L.; Eklund, J. Relationships between chlorophyll, salinity, phosphorus, and nitrogen in lakes and marine areas. J. Coast. Res. 2010, 26, 412–423. [Google Scholar] [CrossRef]
Band: Center Wavelength (Width) | Description |
---|---|
Coastal Blue (CB): 427 nm (400–450 nm) | Absorbed by chlorophyll in healthy plants, it therefore aids in vegetation analysis |
Near Infrared 1 (NIR1): 831 nm (770–895 nm) | Useful in separating water from vegetation |
Near Infrared 2 (NIR2): 908 nm (860–1040 nm) | Aids in vegetation analysis and biomass studies |
Blue (B): 478 nm (450–510 nm) | It gets absorbed by chlorophyll in plants |
Green (G): 546 nm (510–580 nm) | Characterized by high reflectance in healthy plants |
Yellow (Y): 608 nm (585–625 nm) | Detects the degree of yellow color of vegetation |
Red edge (RED): 724 nm (705–745 nm) | Targeted at the high reflectivity portion of vegetation response |
Red (R): 659 nm (630–690 nm) | Highly absorbed by healthy plants |
WorldView-2 Band Combinations | R2 | RMSE | Confidence Interval (CI) (95%) | |
---|---|---|---|---|
(Coastal blue + Near infrared 1)/Near infrared 2 | (CB + NIR1)/NIR2 | 0.83 | 6.839 | 0.0551 |
(Blue + Near infrared 1)/Near infrared 2 | (B + NIR1)/NIR2 | 0.63 | 10.07 | 0.0668 |
(Green + Near infrared 1)/Near infrared 2 | (G + NIR1)/NIR2 | 0.56 | 10.95 | 0.0717 |
(Yellow + Near infrared 1)/Near infrared 2 | (Y + NIR1)/NIR2 | 0.54 | 11.15 | 0.0772 |
(Red edge + Near infrared 2)/Near infrared 1 | (RED + NIR2)/NIR1 | 0.53 | 11.29 | 0.0765 |
(Blue + Near infrared 1)/Red edge | (B + NIR1)/RED | 0.51 | 11.50 | 0.0980 |
(Yellow + Red)/Red edge | (Y + R)/RED | 0.46 | 12.07 | 0.0018 |
Near infrared 1/Near infrared 2 | NIR1/NIR2 | 0.43 | 12.40 | 0.0491 |
Red edge/Near infrared 1 | RED/NIR1 | 0.41 | 12.63 | 0.0560 |
Yellow/Red edge | Y/RED | 0.32 | 13.71 | 0.0514 |
Sampling Station | In-Situ Chlorophyll-a (µg/L) | Spectral Chlorophyll-a (µg/L) | % Residual |
---|---|---|---|
Creek Mouth | 2.130 | 2.24 | 5.16 |
Abra | 32.98 | 22.61 | 31.44 |
Dhow Wharfage | 4.750 | 13.4 | 182.10 |
Floating Bridge | 28.48 | 34.65 | 21.66 |
Dubai Festival City (DFC) | 43.25 | 36.6 | 15.38 |
Sewage Treatment Plant (STP) | 44.93 | 38.01 | 15.4 |
Al Jaddaf | 47.13 | 48.48 | 2.86 |
Ras Al Khor Wildlife Sanctuary | 37.25 | 44.98 | 20.75 |
Sampling Station | Q2, 2010 (µg/L) | Q2, 2011 (µg/L) | Q2, 2012 (µg/L) |
---|---|---|---|
Creek Mouth | 0.1 | 8.1 | 4.6 |
Hyatt Regency Dubai | 10.8 | 11.2 | 15.6 |
Abra | 6.4 | 29.8 | 5.9 |
Dhow Wharfage | 9.2 | 32.8 | 4.6 |
Floating Bridge | 7.7 | 22.4 | 57.5 |
Average | 6.84 | 20.86 | 17.64 |
Sampling Station | In-Situ Chl-a (µg/L) | LOG (TN/P) (Modelled) | TN/P (Modelled) | LOG (TN/P) (In-Situ) | TN/P (In-Situ) | % Error |
---|---|---|---|---|---|---|
Creek Mouth | 2.13 | 1.57 | 37.22 | 1.72 | 52 | 28.42 |
Abra | 32.98 | 1.11 | 12.86 | 1.21 | 16.1 | 20.15 |
Dhow Wharfage | 4.75 | 1.44 | 27.27 | 1.24 | 17.4 | 56.71 |
Floating Bridge | 28.48 | 1.13 | 13.61 | 1.05 | 11.15 | 22.02 |
Dubai Festival City (DFC) | 43.25 | 1.06 | 11.57 | 1.06 | 11.57 | 0.01 |
Sewage Treatment Plant (STP) | 44.93 | 1.06 | 11.40 | 1.05 | 11.28 | 1.11 |
Al Jaddaf | 47.13 | 1.05 | 11.19 | 1.06 | 11.56 | 3.13 |
Ras Al Khor Wildlife Sanctuary | 37.25 | 1.09 | 12.26 | 1.12 | 13.13 | 6.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortula, M.; Ali, T.; Bachir, A.; Elaksher, A.; Abouleish, M. Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis. Water 2020, 12, 1954. https://doi.org/10.3390/w12071954
Mortula M, Ali T, Bachir A, Elaksher A, Abouleish M. Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis. Water. 2020; 12(7):1954. https://doi.org/10.3390/w12071954
Chicago/Turabian StyleMortula, Maruf, Tarig Ali, Abdallah Bachir, Ahmed Elaksher, and Mohamed Abouleish. 2020. "Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis" Water 12, no. 7: 1954. https://doi.org/10.3390/w12071954
APA StyleMortula, M., Ali, T., Bachir, A., Elaksher, A., & Abouleish, M. (2020). Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis. Water, 12(7), 1954. https://doi.org/10.3390/w12071954