Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Hydrologic Data
2.2. Sampling and Preparation Method
2.3. Quantification and Characterization of Microplastics
3. Results
3.1. Hydrological Data Analysis
3.2. Microplastics Quantification
4. Discussion
4.1. Microplastic Size Distribution
4.2. Comparing the Amount of Microplastic with Other Areas Elsewhere
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, Tacoma, WA, USA, 9–11 September 2008; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 2016, 108, 105–112. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.D.; Mahon, A.M.; Ramsperger, A.F.R.M.; Trotter, B.; Redondo-Hasselerharm, P.E.; Koelmans, A.A.; Lally, H.T.; Murphy, S. Microplastics in Freshwater Biota: A Critical Review of Isolation, Characterization, and Assessment Methods. Glob. Chall. 2019, 4, 1800118. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Pu, S.; Liu, S.; Bai, Y.; Mandal, S.; Xing, B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 114089. [Google Scholar] [CrossRef] [PubMed]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H.; Raley-Susman, K.M.; He, D. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 2019, 250, 447–455. [Google Scholar] [CrossRef]
- Rothen-Rutishauser, B.M.; Schurch, S.; Haenni, B.; Kapp, N.; Gehr, P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ. Sci. Technol. 2006, 40, 4353–4359. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Tamayo-Belda, M.; Pulido-Reyes, G.; Amariei, G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 2019, 6, 1382–1392. [Google Scholar] [CrossRef]
- Cummins, K.W.; Klug, M.J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 1979, 10, 147–172. [Google Scholar] [CrossRef]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Karlsson, T.M.; Vethaak, A.D.; Almroth, B.C.; Ariese, F.; van Velzen, M.; Hassellöv, M.; Leslie, H.A. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 2017, 122, 403–408. [Google Scholar] [CrossRef]
- Hoellein, T.J.; Shogren, A.J.; Tank, J.L.; Risteca, P.; Kelly, J.J. Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Sci. Rep. 2019, 9, 3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhang, L.; Xue, B.; Wang, Y. Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions. Environ. Pollut. 2019, 244, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Leed, R.; Smithson, M. Ecological Effects of Soil Microplastic Pollution. Sci. Insights. 2019, 30, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.W.; Huang, Z.; Hu, L.X.; Liu, S.; Li, H.X.; Li, J.L.; Chen, C.E.; Xu, X.R.; Zhao, J.L.; Ying, G.G. Occurrence and mass loads of biocides in plastic debris from the Pearl River system, South China. Chemosphere 2020, 246, 125771. [Google Scholar] [CrossRef]
- Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Tassin, B. Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–83. [Google Scholar] [CrossRef] [Green Version]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- Di, M.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616, 1620–1627. [Google Scholar] [CrossRef]
- Vieira, B.; Listo, F. Assessment of the landslide and flood risks in São Paulo City, Brazil. EGUGA 2010, 636. [Google Scholar]
- Barreto dos Santos, P.; Maziviero, M.C. Impactos da inserção dos piscinões na escala local: O caso do Reservatório de Contenção RC5—Taboão. Arq. Urb 2016, 17, 22–44. [Google Scholar]
- Szeląg, B.; Kiczko, A.; Dąbek, L. Stormwater Reservoir Sizing in Respect of Uncertainty. Water 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.; Franz, A.; Gilbreath, A.; Lin, D.; Miller, L.; Sedlak, M.; Wong, A.; Box, C.; Holleman, R.; Munno, K.; et al. Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region; SFEI-ASC Publication, 950; San Francisco Estuary Institute & The Aquatic Science Center: Richmond, CA, USA, 2019; p. 402. Available online: https://pdfs.semanticscholar.org/61ee/010b3510bf714697935021d88d176aa00e86.pdf?_ga=2.24366010.1880716724.1594509783-1458700925.1594509783 (accessed on 12 May 2020).
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Koeppen, W. Climatologia: Con un estudio de los climas de la tierra. Fondo de Cultura Económica, 1948; Volume 478. Available online: https://books.google.com.br/books/about/Climatolog%C3%ADa.html?id=kA_IGwAACAAJ&redir_esc=y (accessed on 14 May 2020).
- DAEE. Banco de Dados Hidrológicos. Available online: http://www.hidrologia.daee.sp.gov.br/ (accessed on 30 October 2019).
- IBGE. Instituto Brasileiro de Geografia e Estatística. IBGE Cidades. Available online: https://cidades.ibge.gov.br/ (accessed on 30 March 2020).
- Oi-Diário. Decisão de colocar o piscinão para funcionar salvou o centro de Poá das enchentes neste verão. Available online: https://oidiario.com.br/decisao-de-colocar-o-piscinao-para-funcionar-salvou-o-centro-de-poa-das-enchentes-neste-verao/ (accessed on 23 April 2020).
- Poá. Piscinão volta a evitar alagamentos na região central de Poá. Available online: https://prefeituradepoa.sp.gov.br/piscinao-volta-a-evitar-alagamentos-na-regiao-central-de-poa/ (accessed on 27 February 2020).
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol. Oceanogr. Methods 2012, 10, 524–537. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, C.V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Dikareva, N.; Simon, K.S. Microplastic pollution in streams spanning an urbanisation gradient. Environ. Pollut. 2019, 250, 292–299. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2017; p. 43. [Google Scholar]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- Olesen, K.B.; Stephansen, D.A.; van Alst, N.; Vollertsen, J. Microplastics in a Stormwater Pond. Water 2019, 11, 1466. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Env. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Nor, N.H.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar] [CrossRef]
- Ballent, A.; Corcoran, P.L.; Madden, O.; Helm, P.A.; Longstaffe, F.J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 2016, 110, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Nel, H.A.; Dalu, T.; Wasserman, R.J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 2018, 612, 950–956. [Google Scholar] [CrossRef]
- Jiang, C.; Yin, L.; Li, Z.; Wen, X.; Luo, X.; Hu, S.; Yang, H.; Long, Y.; Deng, B.; Huang, L.; et al. Microplastic pollution in the rivers of the Tibet Plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Tan, Z.; Gao, Y.; Zhan, Z.; Chen, Q.; Cai, L. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 2017, 171, 248–258. [Google Scholar] [CrossRef]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Claessens, M.; Meester, S.D.; Landuyt, L.V.; Clerck, K.D.; Janssen, C.R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199–2204. [Google Scholar] [CrossRef]
Category | Definition |
---|---|
Shape | |
Line/Fibres | Length >> diameter |
Film/Sheets | Length << thickness |
Fragments | Irregular shape |
Pellets | Spheres and microbeads made of this size |
Size | (<0.5 mm, 0.5–1 mm, >1 mm) |
Composition | Based on spectroscopy bands |
Microplastic | <0.5 mm (MP Units/kg) | 0.5–1 mm (MP Units/kg) | 1–5 mm MP Units/kg) | Total (MP Units/kg) |
---|---|---|---|---|
Line/Fibre | 2217 (±56%) | 1567 (±58%) | 1583 (±36%) | 5367 (±41%) |
Film/Sheet | 2092 (±46%) | 825 (±47%) | 858 (±73%) | 3775 (±45%) |
Fragment | 31,608 (±22%) | 883 (±59%) | 492 (±52%) | 32,984 (±22%) |
Pellet | 15,417 (±57%) | - | - | 15,417 (±57%) |
Total | 51,333 (±32%) | 3275 (±48%) | 2933 (±32%) | 57,542 (±31%) |
Location | Country | MP Quantity | Reference |
---|---|---|---|
Lakes | Italy | Up to 234 units/kg | [46] |
China | Up to 300 units/kg | [21] | |
Mangrove | Singapore | Up to 63 units/kg | [47] |
Creek | Canada | Up to 28,000 units/kg | [48] |
Rivers | Germany | Up to 3763 units/kg | [39] |
South Africa | Up to 563 units/kg | [49] | |
China (Tibet) | Up to 195 units/kg | [50] | |
China | Up to 544 units/kg | [51] | |
UK | Up to 660 units/kg | [52] | |
New Zealand | Up to 80 units/kg | [38] | |
Beach | Belgium | Up to 390 units/kg | [53] |
Bay | US | Up to 60,000 units/kg | [25] |
Stormwater Pond | Denmark | Up to 950,000 units/kg | [45] |
Poá SDR | Brazil | 57,542 units/kg | Present study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga Moruzzi, R.; Galileu Speranza, L.; Tomazini da Conceição, F.; Teodoro de Souza Martins, S.; Busquets, R.; Cintra Campos, L. Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics. Water 2020, 12, 1994. https://doi.org/10.3390/w12071994
Braga Moruzzi R, Galileu Speranza L, Tomazini da Conceição F, Teodoro de Souza Martins S, Busquets R, Cintra Campos L. Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics. Water. 2020; 12(7):1994. https://doi.org/10.3390/w12071994
Chicago/Turabian StyleBraga Moruzzi, Rodrigo, Lais Galileu Speranza, Fabiano Tomazini da Conceição, Suely Teodoro de Souza Martins, Rosa Busquets, and Luiza Cintra Campos. 2020. "Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics" Water 12, no. 7: 1994. https://doi.org/10.3390/w12071994
APA StyleBraga Moruzzi, R., Galileu Speranza, L., Tomazini da Conceição, F., Teodoro de Souza Martins, S., Busquets, R., & Cintra Campos, L. (2020). Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics. Water, 12(7), 1994. https://doi.org/10.3390/w12071994