Development of an Environmental Decision Support System for Enhanced Coagulation in Drinking Water Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
Influent Raw Water Parameter Selection
2.2. Jar Test Experiments
2.3. Experimental Methodology for UF Membrane
2.4. Chemical Analysis
2.5. Response Surface Methodology (RSM) Design
3. Results and Discussion
3.1. Development and Evaluation of the Enhanced Coagulation Model
3.1.1. Model Analysis and Diagnosis
3.1.2. Model Optimization
3.2. Knowledge-Based Rules for Coupled Enhanced Coagulation—Membrane Filtration
3.3. EDSS Operational Architecture
- SR1 intensifies the enhanced coagulation (pH and dose of coagulant) to achieve 50% UV254 removal (modify RSM optimization criteria) to ensure a high quality post-coagulated water prior to filtration. This SR works when an influent UV254RAW value is higher than 0.1 cm−1 so as to avoid sand filters pore blocking and increase their useful life. SR1 acts with a fixed optimum pH = 7 and modifies the coagulant dose of the control level optimization criteria (Figure 9). In addition, this SR decreases the costs associated with sand filters and CAG replacement (>50% of DWTP total annual costs).
- SR2 is related to economic cost of the PAC, in cases with high proposed coagulant dose >40 mg·L−1. In these cases, the priority is to adjust the pH instead of surpassing a coagulant dosage of 40 mg·L−1 (Figure 9). Polyaluminum coagulants are more expensive than other alum-based coagulants [49] and for this reason, and also to reduce the formation of chemical sludge, SR2 is important for managing tasks and indirectly contributes to generating lower impact from an environmental viewpoint.
- SR3 is designed to be activated when facing flood events. When the TurbidityRAW is >10 NTU, the percentage of turbidity removal is automatically increased to 75%. As with SR1, the intervention of this SR occurs at the optimization criteria of enhanced coagulation control level, readjusting the coagulant dose to ensure the required quality (Figure 9). Ensuring this percentage of removal in cases where turbidity is high is crucial for plant managers, because turbidity is considered to be the most critical factor in the performance of filtration-based treatments (sand filters and CAG).
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arheimer, B.; Andréasson, J.; Fogelberg, S.; Johnsson, H.; Pers, C.B.; Persson, K. Climate change impact on water quality: Model results from southern Sweden. Ambio 2005, 34, 559–566. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Hejzlar, J.; Dubrovský, M.; Buchtele, J.; Růžička, M. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River, South Bohemia). Sci. Total Environ. 2003, 310, 143–152. [Google Scholar] [CrossRef]
- Kampioti, A.A.; Stephanou, E.G. The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water. Water Res. 2002, 36, 2596–2606. [Google Scholar] [CrossRef]
- Sorlini, S.; Rondi, L.; Gomez, A.P.; Collivignarelli, C. Appropriate technologies for drinking water treatment in Mediterranean countries. Environ. Eng. Manag. J. 2015, 14, 1721–1733. [Google Scholar] [CrossRef]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Raseman, W.J.; Kasprzyk, J.R.; Rosario-Ortiz, F.L.; Stewart, J.R.; Livneh, B. Emerging investigators series: A critical review of decision support systems for water treatment: Making the case for incorporating climate change and climate extremes. Environ. Sci. Water Res. Technol. 2017, 3, 18–36. [Google Scholar] [CrossRef]
- 140/2003 Royal Decree 140/2003 of 7th February, Sanitary Criteria for the Quality of Water for Human Consumption; Ministerio de Asuntos Exteriores y de Cooperación: Madrid, Spain, 2003.
- Crozes, G.; White, P.; Marshall, M. Enhanced coagulation: Its effect on NOM removal and chemical costs. J. Am. Water Work. Assoc. 1995, 87, 78–89. [Google Scholar] [CrossRef]
- Liang, L.; Singer, P.C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ. Sci. Technol. 2003, 37, 2920–2928. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Zhang, Y.; Shi, Q.; Wang, J.; Yu, J.; Yang, M. New insights into trihalomethane and haloacetic acid formation potentials: Correlation with the molecular composition of natural organic matter in source water. Environ. Sci. Technol. 2017, 51, 2015–2021. [Google Scholar] [CrossRef]
- Godo-Pla, L.; Rodríguez, J.J.; Suquet, J.; Emiliano, P.; Valero, F.; Poch, M.; Monclús, H. Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process Saf. Environ. Prot. 2020, in press. [Google Scholar] [CrossRef]
- Sanchez, N.P.; Skeriotis, A.T.; Miller, C.M. Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant. Water Res. 2013, 47, 1679–1690. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Bell, K.; Ibrahim, E.; Verges, D.; Amy, G.; Lechevallier, M. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res. 2000, 34, 3247–3257. [Google Scholar] [CrossRef]
- Sharp, E.L.; Parsons, S.A.; Jefferson, B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts. Environ. Pollut. 2006, 140, 436–443. [Google Scholar] [CrossRef]
- Krzeminski, P.; Vogelsang, C.; Meyn, T.; Köhler, S.J.; Poutanen, H.; de Wit, H.A.; Uhl, W. Natural organic matter fractions and their removal in full-scale drinking water treatment under cold climate conditions in Nordic capitals. J. Environ. Manag. 2019, 241, 427–438. [Google Scholar] [CrossRef]
- Schulz, M.; Bünting, S.; Ernst, M. Impact of powdered activated carbon structural properties on removal of organic foulants in combined adsorption-ultrafiltration. Water 2017, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Fiksdal, L.; Leiknes, T.O. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J. Memb. Sci. 2006, 279, 364–371. [Google Scholar] [CrossRef]
- Liu, B.; Qu, F.; Guo, S.; Yu, H.; Li, G.; Liang, H.; Van der Bruggen, B. A pilot study of the sludge recycling enhanced coagulation-ultrafiltration process for drinking water: The effects of sludge recycling ratio and coagulation stirring strategy. Water 2017, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Zhang, M.; Yao, M.; Qiu, Z.; Hong, Y.; Lan, W.; Xia, H.; Jin, X. Membrane fouling and performance of flat ceramic membranes in the application of drinking water purification. Water 2019, 11, 2606. [Google Scholar] [CrossRef] [Green Version]
- Sillanpää, M. Natural Organic Matter in Water: Characterization and Treatment Methods; Elsevier: Oxford, UK, 2015; ISBN 9780128017197. [Google Scholar]
- Pollice, A.; Brookes, A.; Jefferson, B.; Judd, S. Sub-critical flux fouling in membrane bioreactors—A review of recent literature. Desalination 2004, 174, 221–230. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Bu, F.; Gao, B.; Yue, Q.; Liu, C.; Wang, W.; Shen, X. The combination of coagulation and adsorption for controlling ultra-filtration membrane fouling in water treatment. Water (Switzerland) 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Tanaka, K.; Watanabe, Y. Microfiltration of different surface waters with/without coagulation: Clear correlations between membrane fouling and hydrophilic biopolymers. Water Res. 2014, 49, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Peldszus, S.; Peiris, R.H.; Ruhl, A.S.; Mehrez, R.; Jekel, M.; Legge, R.L.; Huck, P.M. Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques. Water Res. 2014, 48, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Shamsuddin, N.; Das, D.B.; Starov, V.M. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow. Chem. Eng. J. 2015, 276, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Bridgeman, J.; Bieroza, M.; Baker, A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment. Rev. Environ. Sci. Biotechnol. 2011, 10, 277–290. [Google Scholar] [CrossRef]
- Poch, M.; Cortés, U.; Comas, J.; Rodriguez-Roda, I.; Sànchez-Marrè, M. Decisions on Urban Water Systems: Some Support; Universitat de Girona publicacions: Girona, Spain, 2012; ISBN 9788484583820. [Google Scholar]
- Godo-Pla, L.; Emiliano, P.; Valero, F.; Poch, M.; Sin, G.; Monclús, H. Predicting the oxidant demand in full-scale drinking water treatment using an artificial neural network: Uncertainty and sensitivity analysis. Process Saf. Environ. Prot. 2019, 125, 317–327. [Google Scholar] [CrossRef]
- Godo-pla, L.; Emiliano, P.; González, S.; Poch, M.; Valero, F.; Monclús, H. Implementation of an environmental decision support system for controlling the pre-oxidation step at a full-scale drinking water treatment plant. Water Sci. Technol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Poch, M.; Comas, J.; Rodríguez-Roda, I.; Sànchez-Marrè, M.; Cortés, U. Designing and building real environmental decision support systems. Environ. Model. Softw. 2004, 19, 857–873. [Google Scholar] [CrossRef]
- Ferrero, G.; Monclús, H.; Sancho, L.; Garrido, J.M.; Comas, J.; Rodríguez-Roda, I. A knowledge-based control system for air-scour optimisation in membrane bioreactors. Water Sci. Technol. 2011, 63, 2025–2031. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zainal-Abideen, M.; Aris, A.; Yusof, F.; Abdul-Majid, Z.; Selamat, A.; Omar, S.I. Optimizing the coagulation process in a drinking water treatment plant–Comparison between traditional and statistical experimental design jar tests. Water Sci. Technol. 2012, 65, 496–503. [Google Scholar] [CrossRef]
- Arruda, P.M.; Pereira-Filho, E.R.; Libânio, M.; Fagnani, E. Response surface methodology applied to tropical freshwater treatment. Environ. Technol. 2018, 1–11. [Google Scholar] [CrossRef]
- Ghafari, S.; Abdul, H.; Hasnain, M.; Akbar, A. Application of response surface methodology (RSM) to optimize coagulation—Flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hu, Y.; Lu, Y.Z.; Zeng, R.J.; Sheng, G.P. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wei, H.; Li, A.; Yang, H. Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization. J. Environ. Manage. 2019, 233, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Espadaler, I.; Caixach, J.; Om, J.; Ventura, F.; Cortina, M.; Pauné, F.; Rivera, J. Identification of organic pollutants in Ter river and its system of reservoirs supplying water to Barcelona (Catalonia, Spain): A study by GC/MS and FAB/MS. Water Res. 1997, 31, 1996–2004. [Google Scholar] [CrossRef]
- Ates, N.; Kitis, M.; Yetis, U. Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy. Water Res. 2007, 41, 4139–4148. [Google Scholar] [CrossRef]
- Le Clech, P.; Jefferson, B.; Chang, I.S.; Judd, S.J. Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Memb. Sci. 2003, 227, 81–93. [Google Scholar] [CrossRef]
- Monclús, H.; Ferrero, G.; Buttiglieri, G.; Comas, J.; Rodriguez-Roda, I. Online monitoring of membrane fouling in submerged MBRs. Desalination 2011, 277, 414–419. [Google Scholar] [CrossRef]
- Romero, J.R.; Imberger, J. Effect of a flood underflow on reservoir water quality: Data and three-dimensional modeling. Arch. Hydrobiol. 2003, 157, 1–25. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E. Standard Method 5910B: Ultraviolet Absorption Method, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Trinh, T.K.; Kang, L.-S. Application of response surface method as an experimental design to optimize coagulation tests. Environ. Eng. Res. 2010, 15, 63–70. [Google Scholar] [CrossRef]
- Anderson, M.J.; Whitcomb, P.J. Practical aspects for designing statistically optimal experiments. J. Stat. Sci. Appl. 2014, 2, 85–92. [Google Scholar]
- Asrafuzzaman, M.; Fakhruddin, A.N.M.; Alamgir Hossain, M. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 2011, 2011, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernitsky, D.J.; Edzwald, J.K. Practical paper selection of alum and polyaluminum coagulants: Principles and applications. J. Water Supply Res. Technol. 2006, 55, 121–141. [Google Scholar] [CrossRef]
- Lee, S.; Aurelle, Y.; Roques, H. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil. J. Memb. Sci. 1984, 19, 23–38. [Google Scholar] [CrossRef]
- Hessen, D.O.; Gjessing, E.T.; Knulst, J.; Fjeld, E. TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 1997, 36, 139–151. [Google Scholar] [CrossRef]
- Lowe, J.; Hossain, M.M. Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination 2008, 218, 343–354. [Google Scholar] [CrossRef]
- Dragon, K.; Górski, J.; Kruć, R.; Drozdzyński, D.; Grischek, T. Removal of natural organic matter and organic micropollutants during riverbank filtration in Krajkowo, Poland. Water 2018, 10, 1457. [Google Scholar] [CrossRef] [Green Version]
Parameter | Units | Mean | 10th Percentile | 90th Percentile |
---|---|---|---|---|
QRAW | m3·s−1 | 0.56 ± 0.11 | 0.43 | 0.73 |
TempRAW | °C | 13.11 ± 3.06 | 10.2 | 18.62 |
pHRAW | - | 7.80 ± 0.2 | 7.5 | 8 |
TOCRAW | mg·L−1 | 2.56 ± 0.59 | 1.87 | 3.27 |
TurbRAW | NTU | 1.08 ± 2.01 | 0.43 | 1.77 |
TurbidityRAW | TOCRAW | pHRAW | ClO2DOSE | |
---|---|---|---|---|
Coagulant dose | 0.46 | 0.20 | 0.16 | 0.03 |
Run | Factors | Responses (% of Removal) | ||||
---|---|---|---|---|---|---|
pH | Coagulant Dose | Turbidity | TOC | UV254 | ||
Units | (mg·L−1) | (NTU) | (mg·L−1) | (cm−1) | (%) | |
1 | 7 | 25 | 51 | 10.2 | 27.2 | 29.5 |
2 | 7 | 25 | 62.2 | 10.8 | 37.8 | 36.9 |
3 | 7 | 25 | 64.9 | 7.3 | 34 | 35.4 |
4 | 8.5 | 40 | 65.1 | 6.8 | 34.6 | 35.5 |
5 | 5.5 | 10 | 56.3 | 8 | 23.4 | 29.2 |
6 | 5.5 | 10 | 66.6 | 17 | 36.2 | 39.9 |
7 | 8.5 | 10 | 47.1 | ns | 1.2 | - |
8 | 5.5 | 40 | 70.9 | 36.3 | 41.8 | 49.7 |
9 | 8.5 | 10 | 55.4 | ns | 1.9 | - |
10 | 5.5 | 40 | 67.3 | 29.8 | 42.3 | 46.5 |
11 | 8.5 | 40 | 65.5 | 10.6 | 14.4 | 30.2 |
12 | 7 | 25 | 68.4 | 17 | 20.8 | 35.4 |
13 | 7 | 25 | 67.5 | 21.8 | 16 | 35.1 |
14 | 9.5 | 25 | ns | 11.2 | 19.5 | - |
15 | 4.5 | 25 | 77.5 | 23.2 | 49.3 | 50 |
16 | 7 | 0 | 47.6 | ns | ns | - |
17 | 7 | 50.1 | 62.1 | 35.3 | 22.7 | 40 |
18 | 7 | 25 | 67.7 | 20,4 | 22.1 | 36.7 |
Coded Equation | N Samples | R2 |
---|---|---|
Turbidity removal (%) = +64.77 − 3.35A + 4.05B * + 3.19AB + 2.02A2 − 4.2B2 * | N = 17 | 0.79 |
TOC removal (%) = +15.86 − 3.77A * + 0.08B − 6.54AB − 0.88A2 + 5.69B2 * | N = 15 | 0.89 |
UV254 removal (%) = +24.39 − 10.4A * + 7.06B * + 0.62AB + 3.14A2 − 2.03B2 | N = 18 | 0.76 |
Flood | Sample | Turbidity (NTU) | TOC (mg·L−1) | UV254 (cm−1) | KLost |
---|---|---|---|---|---|
Before | Raw water | 1.97 | 3.72 | 0.075 | ns |
DWTP post C. | 0.85 | 3.28 | 0.046 | 30.3 | |
Run 8 | 1.3 | 3.15 | 0.031 | ns | |
Run 17 | 0.9 | 3.43 | 0.039 | ns | |
After | Raw water | 74 | 3.6 | 0.264 | ns |
DWTP post C. | 0.85 | 3.28 | 0.046 | 19.2 | |
Run 8 | 1.3 | 3.15 | 0.031 | 21.5 | |
Run 17 | 0.9 | 3.43 | 0.039 | 42.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suquet, J.; Godo-Pla, L.; Valentí, M.; Verdaguer, M.; Martin, M.J.; Poch, M.; Monclús, H. Development of an Environmental Decision Support System for Enhanced Coagulation in Drinking Water Production. Water 2020, 12, 2115. https://doi.org/10.3390/w12082115
Suquet J, Godo-Pla L, Valentí M, Verdaguer M, Martin MJ, Poch M, Monclús H. Development of an Environmental Decision Support System for Enhanced Coagulation in Drinking Water Production. Water. 2020; 12(8):2115. https://doi.org/10.3390/w12082115
Chicago/Turabian StyleSuquet, Jordi, Lluís Godo-Pla, Meritxell Valentí, Marta Verdaguer, Maria J. Martin, Manel Poch, and Hèctor Monclús. 2020. "Development of an Environmental Decision Support System for Enhanced Coagulation in Drinking Water Production" Water 12, no. 8: 2115. https://doi.org/10.3390/w12082115
APA StyleSuquet, J., Godo-Pla, L., Valentí, M., Verdaguer, M., Martin, M. J., Poch, M., & Monclús, H. (2020). Development of an Environmental Decision Support System for Enhanced Coagulation in Drinking Water Production. Water, 12(8), 2115. https://doi.org/10.3390/w12082115